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Preface

D ATA IS NOWADAYS UBIQUITOUS , voluminous and puzzling. It is not

surprise that scientists are so interested in analysing it, understanding it and

discovering underlying complex patterns within it. And that’s the origin of what

is known as Data Science. But as much as the scientific interest in this re-

spect is growing, so it is practitioners curiosity about potential applications

in real life and development of technological tools for Data Science in non-

academic contexts. This booklet has been designed to introduce newcomers Gartner defines a Citizen Data Scientist “as
a person who creates or generates models
that use advanced diagnostic analytics
or predictive and prescriptive capabilities,
but whose primary job function is outside
the field of statistics and analytics”. See:
gartner.com/doc/3534848

to the essentials of Data Science using a hands-on approach rather than a

theoretical perspective. For this aim, it addresses two of its most important

branches: Machine Learning and Metaheuristics. The booklet presents many

introductory examples as well as an assortment of challenges with varying

difficulty levels proposed to the student, to be solved using the Python pro-

gramming language, the current tool–of–choice adopted by the Data Science

community. These challenges (nearly 90 programming exercises) will help

students to acquire skills that hopefully will foster their academic or industry

interests involving data analysis for knowledge discovery.

gartner.com/doc/3534848
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W E ARE IN THE Data Era: almost every conceivable activity (human or

otherwise) generates continuous streams of raw data originated from under-

lying structures, dynamics or complex patterns. Discovering such knowledge

requires suitable algorithms and computation machinery to perform this task

efficiently and automatically, yielding insights to decision–makers or man-

agers about how to improve, grow or benefit from models derived from the rich

information hidden in their data. The models may represent rules, groups, dis-

tributions or optimal regions of the data, explaining their nature and meaning.

Knowledge about these models and how to apply them has got to be known

recently as Data Science.

There are two clear knowledge disciplines overlapping in this modern ap-

proach to science: in the one hand Computer Science contributing the fields Moreover, these fields are not newcomers
to the artificial intelligence community. They
have been around since many decades ago
under different names: Pattern Recognition,
Computational statistics, Data mining,
Stochastic optimisation, Evolutionary
computation, Bioinspired methods, etc.

of Algorithmics and Computer Programming, and on the other hand Maths

and Statistics, contributing fields such as Probability, Statistical Analysis, Op-

timisation and Linear Algebra. In fact, the intersection of these two avenues

gave birth to sub-fields of Artificial Intelligence such as Machine Learning and

Metaheuristics. The big novelty is the addition of a third avenue coming from

the traditional science in the form of domain expertise, experimental studies,

data collection and preparation, randomisation, hypothesis testing, etc.

In recent years (since early 2015) we have seen the rise of Data Science

as an emerging technology triggered mainly by the big advances in Deep

Learning and Machine Learning. The technology is currently evolving to

maturity, but it is still in its development, and moreover, is calling for more

enthusiasts to grab the essentials of its concepts and tools so as to promote

further advance in different scenarios of human activity.

The main motivation behind this notes, is precisely to provide an introduc-

tory level guide to graduate students from different areas of engineering to

help them acquiring essential practical skills to enter a path of discovery in this

novel scientific paradigm. With this aim in mind we have chosen the two (we The examples developed in this document
were coded and tested in Python v3.7, using
the Anaconda distribution and Pycharm
IDE. For downloading and installing the
latest versions, please visit:
www.python.org

www.anaconda.com

www.jetbrains.com/pycharm

believe) most significant branches of development in Data Science, namely

Machine Learning and Metaheuristics, supported with one of the most popular

and widespread programming languages nowadays, i.e Python. Well, without

any further delays, we shall start our practical guided tour of “models for Data

Scientists” in the next chapter.
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THIS CHAPTER FOCUSES ON going through a variety of Machine Learn-

ing (ML) models useful in business and industrial applications; it will provide

advice on concepts and pragmatic skills needed to embark on applied ML

projects.
Example: EasyWine with Machine Learning

Suppose you are an en-

trepreneur launching

EasyWineTM, a new start-

up focusing on a mobile–

based social network for

wine and spirits sales and

distribution in the Bogota

area. Your customers can

buy, track, and even swap

bottles and organise wine-

tasting events.

On the basis of data you

collect from your customers

(profiles, purchases, lo-

cation) plus external data

such as weather, climate,

traffic conditions, etc., Ma-

chine Learning can help

your company to identify

quite precisely sales cam-

paigns, user profiles and

promotions that can boost

its revenue and get you

ahead of competitors.

Before kicking-off, let us state our very own definition of Machine Learning,

as a flavour of artificial intelligence enabling computer systems to learn from

examples, data, and experience rather than to follow pre-programmed rules.

In this way, “machines” (or more precisely, algorithms) are able to discover

patterns, detect anomalies and adapt rules to perform complex tasks usually

associated to human intelligence.

Recent years have seen an increasing usage of ML in common–day situa-

tions, such as image recognition systems used in medical diagnostics, video

analysis systems in self-driving vehicles, voice recognition tools used by vir-

tual personal assistants, and recommender systems deployed in online shops.

As long as research progresses in this field, ML would become a disruptive

technology in many areas of engineering, originating significant opportunities

for social and economic development.

The big picture

So let’s step-up one ladder in the staircase to Machine Learning. Here it is a

big picture:

Machine
Learning

Supervised vs
Unsupervised

Prediction

Classification

Clustering
Model

Validation

Applications
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On the one hand Machine Learning considers mainly two models of learn-

ing: Supervised and Unsupervised. Broadly speaking, the first approach

correspond in human learning to “instructional” education, whereas the sec-

ond may be think of as “self-study”. In other words, in supervised learning the

machine is instructed with a set of previously expertly annotated (labelled)

examples from which it has to discover patterns that explains their behaviour

and moreover, that also identify newly unobserved examples in the future.

In contrast, the unsupervised learning scenario occurs when the machine

is not instructed but just provided with a raw set of data samples from which

it has to discover underlying, hidden concepts. These two approaches can

be performed separately, or they can be intertwined during a particular Data

Science project. Examples of projects in classification are:
a bank system to segment customers
according to loan payment behaviour, a
medical application to discriminate between
healthy vs ill patients of an infectious
disease, an advertisement server capable
of displaying user-tailored ads in a social
network.

Supervised learning encompasses two main tasks: classification and

prediction. In classification, the goal is to learn how to discriminate between

examples labelled into two (binary classification) or more classes (multi-class

classification). The machine therefore learns a classification function in the

form of a mathematical expression or a set of rules.
Examples of application of prediction are:
forecasting if a currency exchange rate will
surge or drop as a consequence of political
news, planning on-demand traffic routes
according to weather condition and hour of
day.

On the other hand, the task of prediction attempts to anticipate the next

event of a phenomenon based on the trend of past observations. In fact, clas-

sification sometimes is considered a type of prediction where the dependent

variable is discrete (binary or categorical), whereas proper prediction is about

forecasting a continuous–valued independent variable. Examples of clustering are: the object
recognition module of the video cameras of
a self-driving car, an e-commerce retailer
recommender system to suggest items for
a customer based on his purchase, a credit
card fraud alert monitoring application of a
bank.

Now, regarding unsupervised learning, the main task is related to cluster-

ing. Here, the machine must learn the structure (arrangements, connections,

order) underlying a sample of observations. Usually these observations are

given without any further expert information; hence, the best the machine

can do is to try to group together samples using an affinity criteria (the most

similar according to a particular distance measure). Besides, sometimes the

Screenshots of DeepMind playing Space
Invaders and Pong as an expert gamer. See:
youtube.com/watch?v=W2CAghUiofY

machine is provided with a few labelled samples and a lot of unlabelled sam-

ples; this mixed mode of learning has been called Semi-supervised Learning.

Another important issue in Machine Learning is to ensure the generalisa-

tion capabilities of the learner. That is, the machine must be able to recognise

correctly unobserved data, so as to respond successfully in future situations.

The tips and techniques used to achieve this goal are collectively known as

Model Validation.

Googles’s QuickDraw canvases. See:
quickdraw.withgoogle.com

Lastly, ML of course is about real–life applications. So far we have men-

tioned a few, but nowadays the scope of applications are increasingly ap-

pearing in all segments of industry: banking, retail, medicine, education,

environment, traffic, digital, real state, government... the list is limitless. The

hype ML has gained in industry is partially credited to the recent success of

Deep Learning, for example, the widely publicised milestone of DeepMind’s

machine that learned to play Atari games at an expert gamer level, or the

recognition abilities of the Google’s Quick Draw canvas engine capable of

identifying handwritten doodles (even poor ones) with high accuracy.
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So let’s start this tutorial with the basic tools needed to understand data

and then to learn models on the data. As said before, the idea of the tutorial

is to guide you through concepts and practical examples of increasing com-

plexity as the exposition progresses. We shall start by exercising the visual

exploration of the data.

Exploratory data analysis

In this section we shall introduce data visualisation tools by means of the

following case-study.

A movie-recommender system: part 1
Let us assume you are the owner of a local cinema screen in your neigh-
bourhood. You are a cinema–lover, so along with the obvious blockbuster
screenings, you want your regulars to have the chance to watch the best
movies in cinema history. So, you need to schedule assortments of similar
award-winning movies according to recommendation given by movie-goers.
Thus, this exercise is tailored towards building a movie–recommender sys-
tem by using basic data–manipulation operations with the Python libraries
numpy and matplotlib. The aim in the first part of this exercise is to conduct a
exploratory analysis of the history of Oscar–winning movies.

For illustration purposes, we will work with a database containing informa-

tion about the winners of the Oscar to the best movie from 1927 to 2018. Let’s

have a sneak peek into the dataset: The dataset file can be downloaded from:
https://goo.gl/MaqRKQ

name year nominat ions r a t i n g du ra t i on genre1 genre2 re lease
Shape of Water 2018 13 7.4 123 Fantasy Romance August
Moonl ight 2017 8 7.5 111 Drama November
S p o t l i g h t 2016 6 8.1 128 Crime Drama November
Birdman 2015 9 7.8 119 Comedy Drama November
12 Years Slave 2014 9 8.1 134 Biography Drama November
Argo 2013 7 7.8 120 Biography Drama October
The A r t i s t 2012 10 8 100 Comedy Drama October
The King Speech 2011 12 8 118 Biography Drama December
The Hurt Locker 2010 9 7.6 131 Drama H is to r y Ju ly
( . . . )

Dataset credit: Shehroz S. Khan @ U of Toronto

The following lines of code import the aforementioned Python libraries:

import matplotlib.pyplot as plt
import numpy as np

Now let’s start–off by loading the data into a table:

Page 10
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# Data loading
movies = np.loadtxt(’best-pictures.csv’

, dtype={’names’: (’name’,’year’,’nominations’,’rating’,’duration’,’genre1’,’
genre2’,’release’,’synopsis’)

, ’formats’: (’S30’,’u2’,’u1’,’f2’,’u2’,’S10’,’S10’,’S10’,’S255’)}, delimiter=’
,’, skiprows=1)

# Show first rows of table
print(’\n---------- First rows of table -----------’)
print(movies[:][1:5])

Out[1]:

---------- First rows of table -----------
[(’ Spotlight’, 2015, 6, 8.1, 128, ’Crime’, ’Drama’, ’November’, ’The true story of how the...’)
(’ Birdman’, 2014, 9, 7.8, 119, ’Comedy’, ’Drama’, ’November’, ’Illustrated upon the progress...’)
(’ 12 Years a Slave’, 2013, 9, 8.1, 134, ’Biography’, ’Drama’, ’November’, ’In the antebellum United...’)
(’ Argo’, 2012, 7, 7.8, 120, ’Biography’, ’Drama’, ’October’, ’Acting under the cover of...’)]

Next, using Python is straightforward to obtain basic descriptive statistics

such as duration of the movies:

print(’\n---------- Basic statistics -----------’)
avg_duration = movies[’duration’][:].mean()
std_duration = movies[’duration’][:].std()
print(’Duration average: {0:.0f}+-{1:.0f} mins’.format(avg_duration, std_duration))

Out[2]:

---------- Basic statistics -----------
Duration average: 138+-31 mins

Challenge 2.1
Compute descriptive statistics (maximum, minimum, average and

standard deviation) of the number of nominations, user ratings and

durations. Find those movies (and years) with maximum and minimum

numbers.

Challenge 2.2
Which are the two most frequent Oscar-winning genres? Which one is

the least frequent?

Now let’s see the number of nomination both in text and in a graphical plot:

# Plot nominations per year
x = movies[’year’][::-1]
y = movies[’nominations’][::-1]
plt.plot(x, y)
avg_y = np.array([y.mean() for i in xrange(len(y))])
plt.plot(x, avg_y)
plt.legend((’Nominations’, ’Average’), loc=’lower right’)
plt.title(’Nominations per year’)
plt.show()
print(’\n---------- Nominations per year -----------’)
print(x, y, sep=’\n\n’)

Out[3]:

---------- Nominations per year -----------
[1927 1928 1929 1930 1931 1933 1934 1935 1936 1937 1938 1939 1940 1941
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 ...]

[ 2 3 4 7 1 4 5 8 7 10 7 13 11 10 12 8 10 7 8 8 7 7 14 8
5 13 12 8 8 8 9 12 10 11 10 10 12 10 8 7 11 7 10 8 11 10 ...]
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Let’s do some additional visual exploration, this time the histogram of

nominations history:

# Plot nominations trend vs histogram
fig, axs = plt.subplots(2, 1)
axs[0].plot(x, y, ’ro-’)
axs[0].set_ylim([1, 18])
axs[1].hist(y, bins=14, edgecolor=’black’, linewidth=1.2)
axs[1].set_ylim([1, 18])
axs[1].set_xlabel(’Nominations’)
axs[1].set_ylabel(’Movie count’)
plt.show()

Page 12



Models of Learning and Optimization for Data Scientists Sergio Rojas-Galeano

Challenge 2.3
Show the historical trend and mean value of user-ratings and duration

of movies along years, both in the same plot (you might need to figure

out how to keep the range of values within the same scale).

Challenge 2.4
Plot the curve of average time length of Oscar–winning movies dis-

criminated per genre.

Challenge 2.5
Plot the histogram of genre distribution.

NB: Notice that a movie may belong to more than one genre.

Now let’s move forward to the concept of valence, which is related to the

perceived emotion of a situation, or a sentiment polarity (goodness vs. bad-

ness). Here, a movie–goer may be interested in knowing the valence of a

movie before going to watch it. One possible source to perform sentiment

analysis is to look at the synopsis, which may indicate the attractiveness (posi-

tive valence) or aversiveness (negative valence) of a movie. A naive approach

to obtain valence of a piece of text is by aggregating the valence of individ-

ual words within it. So, for this exercise you will need a valence dictionary of

individual English words (valence is a number in the range [−5, 5]):

abandon -2 backed 1 calm 2 damage -3
abandoned -2 backing 2 calmed 2 damages -3
abandons -2 backs 1 calming 2 damn -4
abducted -2 bad -3 calms 2 damned -4
abduction -2 badass -3 cant stand -3 damnit -4
abductions -2 badly -3 cancel -1 danger -2

(...)

The valence dictionary can be downloaded
from: https://goo.gl/s4qRMvIn Python it is easy to tokenise (split in single words) a fragment of text:

text = "The quick brown fox jumps over the lazy dog"
text.split()

Out[3]:

[’The’,’quick’,’brown’,’fox’,’jumps’,’over’,’the’,’lazy’,’dog.’]

It is also straightforward to load the valence dictionary:

valence = dict(map(lambda (k,v): (k,int(v)),
[ line.split(’\t’) for line in open("valence-dict.txt") ]))

print ("valence(\"good\") = " + str(valence["Good".lower()]))
print ("valence(\"bad\") = " + str(valence["Bad".lower()]))

Out[4]:

valence("Good") = 3
valence("Bad") = -3
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Challenge 2.6
Compute the sentiment of each Oscar–winning movie as the aggre-

gated valence of its respective synopsis. Add a column to the table

with the name "Sentiment".

Hint: You may want to try the np function c_ to concatenate.

Challenge 2.7
Show the 5 most attractive and 5 most aversive movies, including their

posters.

Challenge 2.8
Plot the average, maximum and minimum sentiment per genre.

NB: Notice that a movie may belong to more than one genre.

A movie-recommender system: part 2
Now that you are familiar with the movie database, the second stage

of this exercise is to build a mechanism to recommend movies to

users. There are two approaches to this end (we shall use the first

one):

• Content-Based Recommender: makes recommendations based

on the description and attributes of similar items previously con-

sumed by a user.

• Collaborative Recommender: makes recommendations based on

collecting preferences from many users with similar tastes.

Notice that, per definition, we need to compute similarity between different

items. For this purpose it is easier to work with numerical attributes only, but

in our case we have two categorical attributes: genre and month of release.

One way of converting these to numerical values is the so–called one-hot

encoding, which maps the categorical features to a binary column in a one-of-

K array. So, you can do something like this:

import numpy as np
import pandas as pd
# Data loading #
movies = np.loadtxt(’best-pictures.csv’

, dtype={’names’: (’name’,’year’,’nominations’,’rating’,’duration’,’genre1’,’
genre2’,’release’,’synopsis’)

, ’formats’: (’U30’,’u2’,’u1’,’f2’,’u2’,’U10’,’U10’,’U10’,’U255’)}, delimiter=’
,’, skiprows=1)

# Show first rows of table #
print(’\n---------- Genre column ------’)
print(movies["genre1"][0:5])
df = pd.DataFrame(movies[:]["genre1"])
onehot_genres = pd.get_dummies(df)
print("---------- One hot encoding of genre1 -----------")
print(onehot_genres[:6][:5])
genre1_matrix = onehot_genres.values
print("---------- genre1 as a matrix -----------")
print(genre1_matrix[:5])
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Out[5]:

---------- genre1 column -----------
[’Drama’ ’Crime’ ’Comedy’ ’Biography’ ’Biography’ ’Comedy’ ’Biography’
’Drama’ ’Drama’ ’Crime’ ’Crime’ ’Drama’ ’Drama’ ’Adventure’ ’Comedy’...]
---------- One hot encoding of genre1 -----------

0_Action 0_Adventure 0_Biography 0_Comedy 0_Crime 0_Drama 0_Musical \
0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
2 0 0 0 1 0 0 0
3 0 0 1 0 0 0 0
(...)
---------- genre1 as a matrix -----------
[[0 0 0 0 0 1 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 1 0 0 0 0] ...]

Challenge 2.9
Modify the movies dataset to incorporate binary columns correspond-

ing to the one–hot coding for genres.

NB: Notice that a movie may belong to more than one genre.

Challenge 2.10
Modify the movies dataset to also incorporate the one–hot coding for

release month; additionally replace the synopsis column by its ag-

gregated valence value. At this point your dataset must consists of a

matrix with only numerical attributes (except its "name").

Distance metrics

Similarity indicates how much two data items are alike. In the context of ML

similarity can be measured by means of the distance of vectors representing

features of the items. The closer the distance the higher the similarity of

two vectors can be (distance is usually measured in the range [0, 1]). Some

distance metrics used to measure similarity are: Euclidean distance, Cosine

similarity and Manhattan distance.

Euclidean distance

Given two data items, x, z ∈ Rd i.e. x = (x1, . . . , xd) and z =

(z1, . . . , zd), the Euclidean distance is obtained as:

DE =

√√√√ d

∑
i=1

(xi − zi)2
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Or using numpy:

def euclidean_dist(x,z):
return np.sqrt(np.sum((x-z)**2))

print(euclidean_dist([0,1 ],[1,0])) # should return 1.4142135...

Challenge 2.11
Using all the attributes on your dataset and Euclidean distance, which

is the most similar movie to "Titanic"? Which is the most similar to

"Forrest Gump"? And which one is the most similar to "The Godfa-

ther"?

Manhattan distance

Given two data items, x, z ∈ Rd i.e. x = (x1, . . . , xd) and z =

(z1, . . . , zd), the Manhattan distance is obtained as:

DM =
d

∑
i=1
|xi − zi|

The Cosine similarity is not a proper metric
since it does not comply with the triangle
inequality property; hence, this measure
gives a notion of how similar two items
are, as opposed to how far are them from
each other. For further details see: https:
//en.wikipedia.org/wiki/Cosine_

similarity

Cosine similarity

Given two data items, x, z ∈ Rd i.e. x = (x1, . . . , xd) and z =

(z1, . . . , zd), the the Cosine similarity is obtained as:

DC =
xTz
‖x‖‖z‖

Challenge 2.12
Same as Challenge 2.11 but using Manhattan and Cosine distances.

Is there any noticeable difference in the results?

Challenge 2.13
Write a recommender function that gets as input the name of a movie

and returns as a result the list of the three most similar movies as

found by each of the three distances.
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Challenge 2.14
Repeat Challenge 2.13, but this time retrieve the 5 most similar

movies with each method and return an aggregated list of titles with

no duplicated items.

Challenge 2.15
Precompute a 89 × 89 matrix of movie similarity using Euclidean dis-

tance. Use such matrix to redefine your recommender function when

finding the most similar movies instead of computing distances on-the-

fly for each query. Demonstrate that the matrix–based method is faster

in a large number of random user queries (say k ≥ 1000 times).

Classification problems

In this exercise you will build up a classifier system to identify different classes

of flowers, using the concepts of similarity.

The Iris dataset was introduced by the British
statistician and biologist Ronald Fisher in his
1936 paper The use of multiple measurements
in taxonomic problems as an example of linear
discriminant analysis, see:

en.wikipedia.org/wiki/Ronald_Fisher

The Iris flower data set consists of a collection of 50 samples from each of

the three species of the Iris flower (Iris setosa, Iris virginica and Iris versi-
color). Four attributes (a.k.a features) were measured from each sample: the

length and the width of the sepals and petals, in centimetres.

Image credit: http://en.wikipedia.org/wiki/Iris_flower_data_set

This dataset is among a few others that is available in Python, so you can

load it and get to grips with its contents very easily:

from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets
import pandas as pd

## Import the dataset ##
iris = datasets.load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df[’Species’] = iris[’target’]

## Scatter plot ##
X = iris.data[:, :2] # we only take the first two features.
y = iris.target
plt.figure()
#plt.plot(X[:,0], X[:,1],’o’)
plt.scatter(X[:,0], X[:,1], c=y)
plt.legend(("Setosa","Versicolour","Virginica"), loc="lower right")
plt.show()
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Alternatively you can fetch the data from the original UCI repository:

names = [’sepal-length’, ’sepal-width’, ’petal-length’, ’petal-width’, ’Species’]
iris = pandas.read_csv(url, names=names)

Most ML projects start–off by initially getting a broad idea of how the data

looks like. We can begin by having a peek to the firsts iris samples:

## Peek at head rows using data frame ##
print(’\n------- Iris data head rows ------’)
print(df.head(8))
print(’Dataset dimensions: ’, df.shape)

Out[1]:

------- Iris data head rows ------
sepal-length sepal-width petal-length petal-width Species

0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
Dataset dimensions: (150, 5)

Then we may list some descriptive statistics for this dataset:

## Basic s t a t i s t i c s ##
p r i n t ( ’ \ n−−−−−−− I r i s data s t a t i s t i c s −−−−−− ’ )
p r i n t ( d f . descr ibe ( ) , ’ \ n ’ )
p r i n t ( d f . groupby ( ’ Species ’ ) . s i ze ( ) )

Out[2]:

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) Species
count 150.000000 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.054000 3.758667 1.198667 1.000000
std 0.828066 0.433594 1.764420 0.763161 0.819232
min 4.300000 2.000000 1.000000 0.100000 0.000000
25% 5.100000 2.800000 1.600000 0.300000 0.000000
50% 5.800000 3.000000 4.350000 1.300000 1.000000
75% 6.400000 3.300000 5.100000 1.800000 2.000000
max 7.900000 4.400000 6.900000 2.500000 2.000000

Species
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50

Challenge 2.16
Report intra–group descriptive statistics (i.e. the above statistics for

Iris-setosa, Iris-versicolor and Iris-virginica separately).

Nice, uh? Well, it gets better as we picture this information visually using

box–and–whisker plots, either in single or separated panels per feature:

## Box and whisker plots ##
df.plot(kind=’box’, sharex=False, sharey=False)
df.plot(kind=’box’, subplots=True, layout=(2,2), sharex=False, sharey=False)
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or

Challenge 2.17
Produce box–and–whisker plots per feature across species sepa-

rately. Which feature seems to encompass a pattern (i.e. if-then-else

rule) to accurately discriminate between species?

Hint: Try using df.boxplot(by=’Species’, figsize=(8, 6))

Furthermore, we can conduct multivariate analysis with a scatter plot

matrix:

## Multivariate scatter plot ##
import seaborn as sb
sb.pairplot(df, hue="Species", size=1.8).fig.show()
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Challenge 2.18
Refine the decision rules inferred in Challenge 2.17, this time using

the scatter plot matrix. Which class of species can be discriminated

perfectly by means of which pair of features? What set of if-then-else

rules are able to do it so?

Another useful tool are joint scatter plots, which combines bivariate, uni-

variate and Pearson correlation statistic in one single plot:

sb.jointplot(x=’sepal-length’, y=’sepal-width’, data=df, size=5)

Challenge 2.19
Show a matrix of Pearson correlation coefficients between all-pairs of

features. Which features are significantly most strongly correlated?

Now that we have a rough understanding of the dataset, let’s build some

classifiers to automatically discriminate between the three species. For this

purpose we initially need to split the data into two subsets, one for learning

the classifier (a.k.a training subset), and the other one for validating the

effectiveness of the classifier (a.k.a test subset). This is because we want

our classifier to discriminate future incoming observations, that is, data that it

has not seen previously; thus, we set apart the test subset to evaluate such

ability. So, let’s call τ the proportion of samples assigned to training (usually,

τ ≥ 0.7) and split the dataset with the following script:

## Split the dataset ##
tau = .7
train = df.sample(frac=tau, random_state=int(time.time()))
test = df.drop(train.index)
print(’\n------- Training set distribution ------’)
print(train.groupby(’Species’).size())
print(’\n------- Test set distribution ------’)
print(test.groupby(’Species’).size())
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Out[3]:

------- Training set distribution ------
Species
Iris-setosa 40
Iris-versicolor 29
Iris-virginica 36

------- Test set distribution ------
Species
Iris-setosa 10
Iris-versicolor 21
Iris-virginica 14

Challenge 2.20
Notice that depending on the random training/test split, the resulting

distributions may become unbalanced (there may be more samples

from one species than for the others in each subset). Run the above

script n times (n ∈ {10, 100, 1000}) and report average distributions

to confirm this. Are the splits balanced in the average?

Challenge 2.21
Modify the script to ensure you will always get a balanced distribution

of training/test samples across species in any single execution.

Majority vs Random class

Right. So now we have the dataset split into training and test, meaning we

are all set and ready to go into our classification experiment! For the purpose

of illustration, let’s start with two very naive classifiers. The first one predicts

all samples in the test set, assuming they come from the majority class in

the training set (Majority class classifier ). The second one predicts by just

randomly “guessing” the labels of the test set (Random guess classifier ):

## Use a "majority class" classifier ##
def majority_clf(Xtrn, Ytrn, Xtst):

unique_labels, counts = np.unique(Ytrn, return_counts=True)
majority_label = unique_labels[np.argmax(counts)]
Ypred = np.repeat(majority_label, len(Xtst))
return Ypred

## Use a "random guess" classifier ##
def random_clf(Xtrn, Ytrn, Xtst):

unique_labels = np.unique(Ytrn)
Ypred = np.random.choice(unique_labels, len(Xtst))
return Ypred

Since we know the actual labels of the test set, we can measure the effec-

tiveness of these (or any) classifier by computing its accuracy on the predicted

labels, as the rate of correct predictions vs. total predictions:

accclf =
∑N

i (yi == ŷi)

N
,

where yi are the actual labels on the test set, ŷi are the predictions given by

the classifier, and N is the number of samples on the test set.
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## Assign data to arrays ##
Xtrn = train.drop([’Species’], axis=1).values
Ytrn = train[’Species’].values
Xtst = test.drop([’Species’], axis=1).values
Ytst = test[’Species’].values

## Test the classifiers ##
Ymaj = majority_clf(Xtrn, Ytrn, Xtst)
acc_maj = (float) (np.sum(np.equal(Ytst, Ymaj)))/len(Ytst)
print(’\n------ Majority class classifier predictions on test set -----\n’, Ytst ==

Ymaj)
print(’Accuracy rate of majority rule classifier: %.2f’ % acc_maj)

Yrnd = random_clf(Xtrn, Ytrn, Xtst)
acc_rnd = (float) (np.sum(Ytst == Yrnd))/len(Ytst)
print(’\n------ Random guess classifier predictions on test set -----\n’, Ytst == Yrnd)
print(’Accuracy rate of random classifier: %.2f’ % acc_rnd)

Out[4]:

------- Majority class classifier predictions on test set ------
[False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False True True
True True True True True True True True True]

Accuracy rate of majority rule classifier: 0.24

------- Random guess classifier predictions on test set ------
[ True False False False False False False False False True True False
True False False False True False False False True False True False

False False False False False True False False False True True False
False True True True True True False False False]
Accuracy rate of random classifier: 0.33

Challenge 2.22
Notice that depending on the random sampling, the resulting accuracy

rates may vary between different executions. Run the experiment 100

times and report average accuracy. Which classifier, Majority class

or Random guessing is more accurate in average? Which is more

consistent?

Challenge 2.23
What’s the effect of varying the proportion of training rate? Repeat

Challenge 2.22 with different values of τ ∈ {0.5, 0.7, 0.9, 0.99}. What

can you say about accuracies in each case?

Nearest neighbour classifier

It is obvious that the two previous strategies perform pretty bad (a desired

accuracy of good classifier should be above 90%). So, let’s try to build two

smarter classifiers. The first one shall use the rules you inferred from the plots

produced in Challenge 2.17 and Challenge 2.18 (namely, Rule based clas-

sifier). The second one shall predict the label of any instance in the test set,

with the same label of the most similar instance in the training set (namely,

Nearest Neighbour or NN classifier ). This one can yet been refined to assign

the label of the majority of the k nearest neighbours (namely, k-NN classifier ).
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## Use a "rule-based" classifier ##
def rule_clf(Xtrn, Ytrn, Xtst):

### fill-in with your code here to obtain YPred
return Ypred

## Use a "k Nearest Neighbours" classifier ##
def kNN_clf(Xtrn, Ytrn, Xtst, k):

### fill-in with your code here to obtain YPred
return Ypred

Challenge 2.24
Implement the Rule–based and 1-NN (Euclidean–based) classifiers

above mentioned. What can you say about their average accuracies?

To what extent they improve with respect to the other naive classifiers

(Majority class and Random guessing)? All–in–all, which classifier

will you recommend as better suited to discriminate the Iris–flower

dataset? Consider using plots to support your answers.

NB. For 1-NN consider the distances measures you studied in Section 2.3

Challenge 2.25

Conduct a deeper study of the k − NN classifier, using different com-

binations of the following running parameters: k ∈ {1, 3, 5, 11, 21},
τ ∈ {0.5, 0.7, 0.9, 0.95, 0.99}, Euclidean, Manhattan and Cosine dis-

tances, and balanced/unbalanced splits. What can you say about the

general performance of this classifier in terms of both, effectiveness

(i.e. accuracy) and efficiency (i.e runtime)? Use accuracy and runtime

plots or tables as evidence.

NB1. Reporting average results of at least 30 repetitions of your experiments, instead of
single executions, provides more solid evidence to support your answers.

NB2. Consider using the following trick to collect runtimes (e.g. for the Majority class

classifier):

1 import time
2 t = time.time()
3 Ymaj = majority\_clf(Xtrn, Ytrn, Xtst)
4 print("Time elapsed: \%.4f secs" \% (time.time() - t))

Classification trees

A classification tree can be think of a hierarchical splitting of the data by

applying a series of “decision tests” over a subset of different features in

the dataset. The decision test on each node of the tree produces a partition of

the data that is recursively split in smaller datasets as the tree grows in depth,

until no more partitions can be made when the data remaining in the leaves of

the tree are of the same class.
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The Auto-MPG dataset contains data about
attributes of different car brands, including
gas consumption, manufacturer, cylinders,
etc. The dataset can be used for example,
to discriminate between efficient vs high-
consuming vehicles. For more information
and download see:
https://archive.ics.uci.edu/ml/

datasets/auto+mpg

So, the idea of a tree classifier is to perform a decision test on an attribute

and observe how good the data is classified according to a label variable.

Let’s take as an example a dataset of vehicles manufacturing information,

and say we are interested in classifying the car brands according to their fuel

consumption in terms of miles per gallon (mpg). Thus, firstly we shall load the

data and add a label indicating the car is efficient or not (fuel consumption ≥
23 mpg):

import pandas as pd
import numpy as np
import time

## Load Auto-MPG dataset ##
filename = ’auto-mpg.data’
column_names = [’mpg’, ’cylinders’, ’displacement’, ’horsepower’,

’weight’, ’acceleration’, ’year’, ’origin’, ’name’]
df = pd.read_csv(filename, delim_whitespace=True, names=column_names)

print("Count of efficient cars: " + str(df[df.mpg >= 23].shape[0]))
print("Count of inefficient cars: " + str(df[df.mpg < 23].shape[0])+"\n")

## Add a class label column ##
df["label"] = (df.mpg >= 23)

## Have a peek at the data ##
pd.set_option(’display.width’, 320)
print(df.head(20))

Using the “efficiency” label we can see the dataset is fairly balanced (201

vs. 197 samples):
Out[5]:

Count of efficient cars: 201
Count of inefficient cars: 197

mpg cylinders displacement horsepower weight acceleration year origin name label
0 18.0 8 307.0 130.0 3504.0 12.0 70 1 chevrolet chevelle malibu False
1 15.0 8 350.0 165.0 3693.0 11.5 70 1 buick skylark 320 False
2 18.0 8 318.0 150.0 3436.0 11.0 70 1 plymouth satellite False
3 16.0 8 304.0 150.0 3433.0 12.0 70 1 amc rebel sst False
4 17.0 8 302.0 140.0 3449.0 10.5 70 1 ford torino False
5 15.0 8 429.0 198.0 4341.0 10.0 70 1 ford galaxie 500 False
6 14.0 8 454.0 220.0 4354.0 9.0 70 1 chevrolet impala False
7 14.0 8 440.0 215.0 4312.0 8.5 70 1 plymouth fury iii False
8 14.0 8 455.0 225.0 4425.0 10.0 70 1 pontiac catalina False
9 15.0 8 390.0 190.0 3850.0 8.5 70 1 amc ambassador dpl False
10 15.0 8 383.0 170.0 3563.0 10.0 70 1 dodge challenger se False
11 14.0 8 340.0 160.0 3609.0 8.0 70 1 plymouth ’cuda 340 False
12 15.0 8 400.0 150.0 3761.0 9.5 70 1 chevrolet monte carlo False
13 14.0 8 455.0 225.0 3086.0 10.0 70 1 buick estate wagon (sw) False
14 24.0 4 113.0 95.00 2372.0 15.0 70 3 toyota corona mark ii True
15 22.0 6 198.0 95.00 2833.0 15.5 70 1 plymouth duster False
16 18.0 6 199.0 97.00 2774.0 15.5 70 1 amc hornet False
17 21.0 6 200.0 85.00 2587.0 16.0 70 1 ford maverick False
18 27.0 4 97.0 88.00 2130.0 14.5 70 3 datsun pl510 True
19 26.0 4 97.0 46.00 1835.0 20.5 70 2 volkswagen 1131 deluxe sedan True

Now see how our Majority class rule performs:

## Define a majority class classifier ##
def majority_clf(Xtrn, Ytrn, Xtst):

labels, counts = np.unique(Ytrn, return_counts=True)
majority_label = labels[np.argmax(counts)]
Ypred = np.repeat(majority_label, len(Xtst))
return Ypred

## Test the classifier ##
Ymaj = majority_clf(Xtrn, Ytrn, Xtst)
acc_maj = (float)(np.sum(np.equal(Ytst, Ymaj))) / len(Ytst)
# print(’\n------ Majority class classifier predictions on test set -----\n’, Ytst ==

Ymaj)
print(’Accuracy rate of majority rule classifier: %.2f’ % acc_maj)
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As expected (because the class distribution is balanced), the prediction

accuracy is pretty much like guessing randomly with a coin flip (50%):

Out[6]:

Accuracy rate of majority rule classifier: 0.51

Would it be possible to improve if we first condition the prediction on the

value of certain attribute, and then predict the majority class of the resulting

distribution? For example, let’s count how cars quantities are distributed

according to label when testing the attribute maker and then cylinders (the

pandas function crosstab() can help us):

## Count conditioned class distributions ##
print(’\n------ Class distribution conditioned on \’maker\’ (i.e. \’origin\’) -----’)
print(pd.crosstab(index=df["origin"][:], columns=df["label"]))

print(’\n------ Class distribution conditioned on \’cylinders\’ -----’)
print(pd.crosstab(index=df["cylinders"][:], columns=df["label"]))

Out[7]:

------ Class distribution conditioned on ’maker’ (i.e. ’origin’) -----
label False True
origin
1 174 75
2 14 56
3 9 70

------ Class distribution conditioned on ’cylinders’ -----
label False True
cylinders
3 3 1
4 20 184
5 1 2
6 73 11
8 100 3

Notice that these tests in fact, render our original problem into classification

trees such as those shown below:

(a) (b)

Image credit: Sham M Kakade @ cs.washington.edu

Furthermore, it is possible of course to apply an additional test on each of

the categories resulting from the first test in order to obtain a more specific

class distribution in lower levels of the tree (see the example next).
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(c)

Image credit: Sham M Kakade @ cs.washington.edu

Challenge 2.26
Implement three different Rule–based classifiers (i.e. if-then-else

rules) for the Auto-MPG dataset, using classification trees (a), (b) and (c),

and then run experiments varying τ ∈ {0.5, 0.8, 0.95}. What can you

say about their average accuracies? To what extent they improve with

respect to the Majority class classifier?

NB. Your classifier should implement one rule per each test in the tree. For example,

Tree (a) may look something like:

def treeA_clf (Xtrn, Ytrn, Xtst):
Ypred = np.repeat(True, len(Xtst))
for i in xrange(len(Xtst)):

if Xtst[i, 7] == 1: # American
Ypred[i] = False

elif Xtst[i, 7] == 2: # European
Ypred[i] = True

else: # Asian
Ypred[i] = True

return Ypred

These trees can be learned automatically from data, using ML algorithms.

Some of these algorithms are implemented in the sckit-learn library:

from sklearn-datasets import load_iris
iris = load_iris()
test_ids = [0, 50, 100]

## Split the data ##
Xtrn = np.delete(iris.data, test_ids, axis=0)
Ytrn = np.delete(iris.target, test_ids)
Xtst = iris.data[test_ids]
Ytst = iris.target[test_ids]

## Train and test a tree classifier ##
tree_clf = tree.DecisionTreeClassifier(max_depth=4)
tree_clf.fit(Xtrn, Ytrn)
print Ytst
print tree_clf.predict(Xtst)
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Challenge 2.27
Train and test four different Tree classifiers for the Auto-MPG dataset,

using different max_depth ∈ {1, 2, 3, 4} and τ ∈ {0.5, 0.9}. What can

you say about their average accuracies? According to these results,

which is the better Tree classifier?

Choosing the best model

Model selection
Model selection is the task of selecting a statistical model from a set

of candidate models, given data. This task involves the design of ex-

periments to choose the best parameters of a given model. Given

candidate models of similar predictive or explanatory power, the sim-

plest model is most likely to be the best choice (Occam’s razor).

Source: Wikipedia

So model selection refers to the process of choosing between different

ML algorithms (e.g. k-NN, Classification Trees) or choosing between different

hyperparameters or sets of features for the same ML algorithm (e.g. the value

of k or max_depth). Model selection usually involves the following considerations:

accuracy, speed, scalability, simplicity, interpretability. All these criteria can be

assessed by means of the following protocol:

Data
visualization

Data
splitting

Training Testing Validation

Next, we illustrate the typical steps followed in a task of model selection:

1. Create and visualise a synthetic dataset for a classification problem

2. Split the dataset into training and testing.

3. Train and test two algorithms: k-NN and Tree Classifier

4. Choose the best model

Ok, so let’s start with ¶: Create and visualise a synthetic dataset...

import matplotlib.pyplot as plt
from sklearn.datasets import make_classification

## Artificial data generation ##
dataset == "One informative, uniform"
X, Y = make_classification(n_samples=1000, n_features=2, n_informative=1, n_redundant

=0, n_repeated=0, n_clusters_per_class=1)

## Scatter plot of the data ##
plt.figure()
plt.title(dataset)
plt.scatter(X[:,0], X[:,1], marker="o", c=Y, s=50, edgecolor="k")
plt.show()
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... which produces the following output:

There are many artificial data generators in sklearn. Let’s try a few ones:

impor t m a t p l o t l i b . pyp lo t as p l t
from sk learn . datasets impor t make_c lass i f i ca t i on , make_blobs ,

make_circles , make_moons , make_gaussian_quanti les
## A r t i f i c i a l data generat ion ##
dataset = "One in fo rma t i ve , uni form "
#dataset = "Two in fo rma t i ve , uni form "
#dataset = "Two in fo rma t i ve , mix ture "
#dataset = "Two in fo rma t i ve , blobs "
#dataset = "Two in fo rma t i ve , c i r c l e s "
#dataset = "Two in fo rma t i ve , moons"
#dataset = "Two in fo rma t i ve , gaussians "

i f ( dataset == "One in fo rma t i ve , uni form " ) :
X, Y = make_c lass i f i ca t i on ( n_samples=1000 , n_features =2 ,

n_ in fo rmat i ve =1 , n_redundant =0 , n_repeated =0 ,
n_c lus te rs_per_c lass =1)

e l i f ( dataset == "Two in fo rma t i ve , uni form " ) :
X, Y = make_c lass i f i ca t i on ( n_samples=1000 , n_features =2 ,

n_ in fo rmat i ve =2 , n_redundant =0 , n_repeated =0 ,
n_c lus te rs_per_c lass =1)

e l i f ( dataset == "Two in fo rma t i ve , mix ture " ) :
X, Y = make_c lass i f i ca t i on ( n_samples=1000 , n_features =2 ,

n_ in fo rmat i ve =2 , n_redundant =0 , n_repeated =0 ,
n_c lus te rs_per_c lass =2)

e l i f ( dataset == "Two in fo rma t i ve , blobs " ) :
X, Y = make_blobs ( n_samples=1000 , n_features =2 , centers =5)

e l i f ( dataset == "Two in fo rma t i ve , c i r c l e s " ) :
X, Y = make_circ les ( n_samples=1000 , noise =.07 , f a c t o r = .4 )

e l i f ( dataset == "Two in fo rma t i ve , moons" ) :
X, Y = make_moons ( n_samples=1000 , noise =.07)

e l i f ( dataset == "Two in fo rma t i ve , gaussians " ) :
X, Y = make_gaussian_quanti les ( n_samples=1000 , n_classes =4 , cov = .2 )
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Now, moving on to the next step: · Split the dataset, there is a convenient

way of randomly splitting the data using the model_selection module from sklearn:

impor t numpy as np
from sk learn . model_select ion impor t t r a i n _ t e s t _ s p l i t
X , y = np . arange (10) . reshape ( ( 5 , 2) ) , range ( 5 )
>>> X
ar ray ( [ [ 0 , 1 ] ,

[ 2 , 3 ] ,
[ 4 , 5 ] ,
[ 6 , 7 ] ,
[ 8 , 9 ] ] )

>>> l i s t ( y )
[ 0 , 1 , 2 , 3 , 4 ]

X_t ra in , X_test , y_ t ra in , y_ tes t = t r a i n _ t e s t _ s p l i t (
. . . X , y , t e s t _ s i z e =0.33 , random_state =42)
>>> X_t ra in
ar ray ( [ [ 4 , 5 ] ,

[ 0 , 1 ] ,
[ 6 , 7 ] ] )

>>> y _ t r a i n
[ 2 , 0 , 3 ]
>>> X_test
ar ray ( [ [ 2 , 3 ] ,

[ 8 , 9 ] ] )
>>> y_ tes t
[ 1 , 4 ]
>>>
>>> t r a i n _ t e s t _ s p l i t ( y , s h u f f l e =False )
[ [ 0 , 1 , 2 ] , [ 3 , 4 ] ]

The subsequent step is: ¸ Train and test the classifiers. So let’s do this

with the now familiar Nearest Neighbour classifier (k-NN), only that this time

we will use the implementation available in sklearn.tree:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix, classification_report
import time
import itertools

# Generate artificial data
dataset = "One informative, uniform"
X, Y = make_classification(n_samples=1000, n_features=2, n_informative=1, n_redundant

=0,n_repeated=0, n_clusters_per_class=1)

# Scatter plot of the data
plt.figure()
plt.title(dataset)
plt.scatter(X[:,0], X[:,1], marker="o", c=Y, s=50, edgecolor="k")
plt.show()

# Split the dataset
X_trn, X_tst, Y_trn, Y_tst = train_test_split(X, Y, test_size=0.8, random_state=int(

time.time()))
print(X_trn.shape)

# Train and test k-NN classifier
clf = KNeighborsClassifier(n_neighbors=1)
clf.fit(X_trn, Y_trn)
acc_trn = clf.score(X_trn, Y_trn)
acc_tst = clf.score(X_tst, Y_tst)
print("kNN accuracy on training: %.2f " % acc_trn)
print("kNN accuracy on test: %.2f " % acc_tst)

Y_pred = clf.predict(X_tst)
tn, fp, fn, tp = confusion_matrix(Y_tst, Y_pred).ravel()
print("kNN sensitivity: %.2f " % float(tp/(tp+fn)))
print("kNN specificity: %.2f " % float(tn/(tn+fp)))
print("kNN confusion matrix: \n %s" % confusion_matrix(Y_tst, Y_pred))
print("kNN classification report (k=1): \n %s" % classification_report(Y_tst, Y_pred))
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Out[8]:

(200, 2)
kNN accuracy on training: 1.00
kNN accuracy on test: 0.98
kNN sensitivity: 1.00
kNN specificity: 0.97
kNN confusion matrix:
[[394 14]
[ 1 391]]
kNN classification report (k=1):

precision recall f1-score support

0 1.00 0.97 0.98 408
1 0.97 1.00 0.98 392

avg / total 0.98 0.98 0.98 800

You can also try a Decision Tree classifier (including a fancy confusion

matrix visualisation):

# Tra in and t e s t Tree c l a s s i f i e r
c l f = Dec i s i onT reeC lass i f i e r ( max_depth=2)
c l f . f i t ( X_trn , Y_trn )
acc_t rn = c l f . score ( X_trn , Y_trn )
acc_ ts t = c l f . score ( X_tst , Y_ ts t )
p r i n t ( " Tree accuracy on t r a i n i n g : %.2 f " % acc_t rn )
p r i n t ( " Tree accuracy on t e s t : %.2 f " % acc_ ts t )

Y_pred = c l f . p r e d i c t ( X_ts t )
tn , fp , fn , tp = confus ion_mat r ix ( Y_tst , Y_pred ) . r ave l ( )
p r i n t ( " Tree s e n s i t i v i t y : %.2 f " % f l o a t ( tp / ( tp+ fn ) ) )
p r i n t ( " Tree s p e c i f i c i t y : %.2 f " % f l o a t ( tn / ( tn+ fp ) ) )
p r i n t ( " Tree confus ion mat r i x : \ n %s " % confus ion_mat r ix ( Y_tst , Y_pred ) )
p r i n t ( " Tree c l a s s i f i c a t i o n r e p o r t ( max_depth=2) : \ n %s " %

c l a s s i f i c a t i o n _ r e p o r t ( Y_tst , Y_pred ) )

## Fancy CM v i s u a l i s a t i o n ##
cm = confus ion_mat r ix ( Y_tst , Y_pred )
cm = cm. astype ( ’ f l o a t ’ ) / cm.sum( ax is =1) [ : , np . newaxis ]
p r i n t ( " Tree normal ised confus ion mat r i x ( max_depth=2) : \ n %s " % cm)

p l t . f i g u r e ( )
p l t . imshow (cm, i n t e r p o l a t i o n = ’ nearest ’ , cmap= p l t .cm. Blues )
p l t . t i t l e ( " Tree c l a s s i f i e r confus ion mat r i x on dataset : %s " % dataset )
p l t . co lo rba r ( )
c lasses = np . unique (Y)
t ick_marks = np . arange ( len ( c lasses ) )
p l t . x t i c k s ( t ick_marks , classes , r o t a t i o n =0)
p l t . y t i c k s ( t ick_marks , c lasses )
th resh = cm.max ( ) / 2 .
f o r i , j i n i t e r t o o l s . product ( range (cm. shape [ 0 ] ) , range (cm. shape [ 1 ] ) ) :

p l t . t e x t ( j , i , format (cm[ i , j ] , ’ .2 f ’ ) , ho r i zon ta l a l i gnmen t = " center "
,

co l o r = " whi te " i f cm[ i , j ] > thresh else " b lack " )
p l t . t i g h t _ l a y o u t ( )
p l t . y l a b e l ( ’ True l a b e l ’ )
p l t . x l a b e l ( ’ Pred ic ted l a b e l ’ )
p l t . show ( )
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Out[9]:

Now it is time for some hands–on exercising of your model selection skills.

Challenge 2.28
Explore and understand your chosen synthetic dataset. You now

know an essential toolbox of Python commands to do this: provide de-

scriptive statistics, scatter plots, box and whisker plots, multivariate

scatter plots, distribution histogram, correlation coefficients, etc.

NB. Generate 3 dataset versions by varying the parameters of the chosen method:

n_classes, n_features, n_informative, n_clusters_per_class, centers, factor.

Challenge 2.29

Train and test some classifiers. Consider at least 3 classifiers: k-

NN, Decision Tree and Majority Class. Report the classification score

of each model on each variation of your dataset using different met-

rics: accuracy, TP, TN, FP, FN, specificity, sensitivity, confusion matrix,

etc. Remember that the more creative and more visual are the more

effective reports.

NB. Perform hyperparameter evaluation, i.e, try different values for n_neighbors,

max_depth, etc.

Hint: You may use sklearn.dummy.DummyClassfier() for the Majority Class classifier.

Challenge 2.30
Select a model. Based on the previous experiments, decide the

fittest model for your dataset variations. Besides models’ classification

score, also provide evidence of their runtime performance.
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On a different note, it would be interesting to be able to visualise the

learned tree classifiers. Let’s see how we can do it.

## Tree visualisation ##
import sklearn.datasets as datasets
import pandas as pd
from sklearn.externals.six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
from pydotplus import graph_from_dot_data

iris = datasets.load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
labels = iris.target

clf = DecisionTreeClassifier()
clf.fit(df, labels)

dot_data = StringIO()
export_graphviz(clf, out_file=dot_data)
graph = graph_from_dot_data(dot_data.get_value())

## Caution: GraphViz software is required. If not in PATH use the following 2 lines
##import os
##os.environ["PATH"] += os.pathsep + "C:\\Downloads\\graphviz-2.38\\release\\bin"

tree.write_pdf("tree.pdf")

Now you can open the .pdf file and see how your tree looks like:
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How about visualising what my classifier is doing? It is possible to see the

discrimination function (or discrimination boundaries for that effect). Let’s try it!

## Discrimination space ##
import numpy as np
import time
X = iris.data[:, 2:4] # Classify using petal length and width
Y = iris.target

#clf = KNeighborsClassifier(n_neighbors=3)
clf = DecisionTreeClassifier(max_depth=5)
clf.fit(X,Y)

X1 = X[:,0]
X2 = X[:,1]
h = .1
xx, yy = np.meshgrid(np.arange(X1.min()-.5, X1.max()+.5, h),

np.arange(X2.min() - .5, X2.max() + .5, h))
zz = clf.predict(np.c_[xx.ravel(), yy.ravel()])
zz = zz.reshape(xx.shape)

plt.figure()
plt.contourf(xx, yy, zz, cmap=plt.cm.coolwarm)
plt.scatter(X1, X2, c=Y, edgecolors="k")
plt.show()

Out[10]:

As you can see, the input space was divided in three non–overlapping

regions whose boundaries were learned by the machine during its training

stage (here the blue, red and grey regions correspond to the three species

of Iris). We remark that each learned model with different hyper–parameters

would yield a different discrimination boundary.

Perceptron learning

The Perceptron was conceived as a metaphor of the operation of the brain to

recognise patterns, or to be more precise, of a single neuron in the brain. The

apparatus used by the Perceptron was the simple neural circuit illustrated be-

low: a set of input cells conducting electrical impulses to a central processing

unit (neuron) that triggers a signal when the total stimuli rise above certain

threshold. The inputs are propagated through synaptic weights. Thus, de-

pending on the inputs, weights and threshold, the neuron fires or stays quiet,

i.e. it outputs a binary signal.
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The mathematical formalism of this abstraction is the following:

f (v) =

{
1 v > 0
0 v ≤ 0

,

where the potential of the neuron is denoted v = ∑n
i=1 wixi − b. Here, the

parameters {wi} correspond to the coefficients of a discrimination function

in the input space given by a dataset D = {(xt, yt)}t=1,2,.... The prediction

given by the Perceptron would be the sign of the potential, yt = sign(v).
A geometric interpretation of the parameters w = {wi} correspond

to a hyperplane in R`, separating the space in to halves: one where the

positive-labeled samples lie and the other one for the negative-labeled. For

example, in the illustration below, a Perceptron linearly separates a dichotomy

in R3; here, binary labels are shown in red (yt = +1) or blue (yt = −1).

A consistent discriminant hyperplane is shown in green, which separates a

dichotomy in such space.
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The training stage of the Perceptron adjusts the hyperplane w every time

an input data item x is wrongly classified (yt 6= ŷt). The learning rule is very

simple, it simply shifts the hyperplane towards said misclassified input, i.e.

w← w + ytxt. The algorithm is depicted below:

Algorithm 1: Perceptron

Input: A stream of patterns {(xt, yt)}t=1,2,...

Output: A linear discriminant w
w← 0
for t = 1, 2, . . . do

ŷt ← sign(wTxt)

if (yt 6= ŷt) then
w← w + ytxt

if convergence test met, stop.

The implementation of the algorithm in Python is listed below.

from random import choice
from numpy import array, dot, random, sign, arange, meshgrid, c_, ones, mean
import matplotlib.pyplot as plt
import time
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Perceptron
from sklearn.neural_network import MLPClassifier

## Training data ##
# Comment/Uncomment for AND gate
# training_data = [ (array([0,0,1]), -1),
# (array([0,1,1]), 1),
# (array([1,0,1]), 1),
# (array([1,1,1]), 1), ]

# Comment/Uncomment XOR gate
training_data = [ (array([0,0,1]), -1),

(array([0,1,1]), 1),
(array([1,0,1]), 1),
(array([1,1,1]), -1), ]

## Initialize Perceptron weights #
random.seed(int(time.time()))
w = random.rand(3)

## Set algorithm parameters ##
errors = []
n = 100
eta = 0.1 # Learning rate controlling the step of the update

## Train the classifier ##
for i in range(n):

xi, yi = training_data[i % len(training_data)] # Get one data point at a time
yi_bar = sign(dot(w, xi)) # Compute the current prediction
if (yi_bar*yi < 0):

w = w + eta*(yi*xi) # Update rule
errors.append(yi_bar) # Record errors

else:
errors.append(0) # Record errors

## Test the classifier ##
print("Perceptron weights: ", w)
print("Perceptron test:")
for i in range(len(training_data)):

xi, yi = training_data[i] # Get one data point at a time
yi_bar = sign(dot(w, xi)) # Compute prediction
print(xi, yi, yi_bar)
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Again, we can plot the learned classifier as follows:

## Plot the errors per iteration ##
plt.plot(errors)
plt.show()

## Plot the input space and decision boundary ##
h = .01
xx1, xx2 = meshgrid(arange(-0.5, 1.5, h),

arange(-0.5, 1.5, h))

yy = sign(dot(w, c_[xx1.ravel(), xx2.ravel(), ones(xx1.shape, dtype=int).ravel()].T))
yy = yy.reshape(xx1.shape)

plt.figure()
plt.contourf(xx1, xx2, yy, cmap=plt.cm.coolwarm)

## Plot the dataset ##
for X, y in training_data:

plt.scatter(X[0], X[1], c="yellow" if y==1 else "white", marker="o" if y==1 else "s
")

plt.show()

Challenge 2.31
Repeat Challenge 2.27 this time using the Perceptron classifier.

A multi-layer Perceptron incorporates
intermediate layers of neurons between
the input and output neurons. You can
have a look at the effects of including these
new layers in the digital neural network
playground found at:
http://playground.tensorflow.org

Alternatively, you can always use the implementation of the Perceptron and

Multi-layer Perceptron found in scikit-learn:

## Let’s try with the Iris dataset ##
iris = load_iris()
X = iris.data
y = iris.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=.3)

## Train and test a Single Layer ## Perceptron
clf = Perceptron()
clf.fit(Xtrain, ytrain)
ypred = clf.predict(Xtest)
print("Perceptron test accuracy: %.2f" % mean(ypred == ytest))

## Train and test a Multilayer Perceptron ##
clf = MLPClassifier(verbose=0, random_state=0, max_iter=100,)
clf.fit(Xtrain, ytrain)
ypred = clf.predict(Xtest)
print("MLP classifier test accuracy: %.2f" % mean(ypred == ytest))

Challenge 2.32
Perform model selection as in Challenge 2.28, Challenge 2.29, Chal-
lenge 2.30, using several synthetic datasets but this time applying the

Perceptron classifier (choose the best value for parameters such as

learning rate or training epochs).
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Clustering

Clustering is one of the main applications of unsupervised learning. Basically

the goal is, given a raw (unlabelled) dataset, get the machine to discover

clusters or groups of data items that are related by some of their intrinsic

properties or attributes.

A popular clustering technique is k-means. This algorithm is aimed at

partitioning the input space in regions by finding k representative centroids

for the data. Then the elements in the dataset closest to each centroid are

associated to each cluster. Let’s say we represent the above faces dataset

using two attributes in a 2D input space, and that we collected 9 observations;

the algorithm proceeds as it is illustrated below.
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k-means is ready and set to be used in sklearn. Let’s try it on Iris:

import sklearn.datasets as datasets
from sklearn.cluster import KMeans

## Load Iris dataset ##
iris = datasets.load_iris()
X = iris.data
Y = iris.target

## Run k-means on the Iris dataset ##
kmeans = KMeans(n_clusters = 3)
y_kmeans = kmeans.fit_predict(x)

## Visualise the discovered clusters ##
plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c = ’red’, label = ’Iris

-setosa’)
plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 100, c = ’blue’, label = ’

Iris-versicolour’)
plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 100, c = ’green’, label = ’

Iris-virginica’)

## Visualises also the the centroids of the clusters ##
plt.scatter(km.cluster_centers_[:,2], km.cluster_centers_[:,3], c="black", label="

Centroids", marker="s")

## Show the plot ##
plt.legend()
plt.show()

Out[11]:

In this case we set k = 3 since we knew there were observations from

three species in the dataset. What happens when we do not know the number

of clusters in advance? Well, a good heuristic to choose k is the “elbow”

method: choose the value of k where the within cluster sum of squares does

not decrease significantly:
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## Run different models k = 1,...,11 ##
wcss = [] #within cluster sum of squares
for i in range(1, 11):

kmeans = KMeans(n_clusters = i, init = ’k-means++’, max_iter = 300, n_init = 10,
random_state = 0)

kmeans.fit(x)
wcss.append(kmeans.inertia_)

## Model selection (choosing k) by observing the ’elbow’ ##
plt.plot(range(1, 11), wcss)
plt.title(’The elbow method’)
plt.xlabel(’Number of clusters’)
plt.ylabel(’WCSS’)
plt.show()

Challenge 2.33
Create at least 3 synthetic datasets with different numbers of clusters

(k ∈ {2, ..., 5}). Then train k-means in each dataset (12 datasets

in total) and visualise the discovered clusters. Report the accuracy

achieved for each model in each case.

NB. Use make_classification, make_blobs, make_circles functions to create the

datasets.

Challenge 2.34

Use the elbow method for model selection of k ∈ {1, ..., 11}) in the

problems of Challenge 2.33. Report the effectiveness of the method

in discovering the correct number of clusters in each case.
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Page 40



CHAPTER 3

Metaheuristic Methods



Models of Learning and Optimization for Data Scientists Sergio Rojas-Galeano

A typical example in optimisation is the
Travelling Salesman Problem (TSP): given
a list of cities and distances, the traveller
should find the best tour that visits each city
only once whilst minimising a measure of
interest (distance, cost, time, etc.) so as to
presumably become the champion salesman
in his company.

WHENEVER we face a situation where multiple choices are available, we

aim to pick the best one, in order to satisfy or even exceed our expectations.

That is what we mean by optimisation, a recurring theme occurring in our

daily life, but also in many scenarios in industry, management, planning,

design, engineering, medical services and logistics. Actually, any question for

a superlative is an optimisation problem (what is the fastest or the cheapest or

the most robust or the most valuable, the most profitable, etc.). In this chapter,

we shall discuss the metaheuristic way of solving such kind of problems.

Metaheuristics are general procedures to search for reasonably well-suited

approximate solutions to optimisation problems. That is, in contrast to exact

methods that find the optimum of a cost function, these methods iteratively

explore local regions aiming to reach a sufficiently good solution (a worthy

candidate, although probably not the best). This situation is common in many

engineering applications, where optimisation problems are usually combina-

torial or ill–defined and hence, where exact methods are not applicable. As a

matter of fact, metaheuristics is currently a relevant and hot topic of research

within the field of Data Science. Exact methods rely on taking advantage of
mathematical properties of the optimisa-
tion function, such as gradients, Hessians,
convexity and so on. When the objective
function does not comply with such well–
behaved problem definitions, metaheuristics
are an alternative to find an approximate
solution. For example, if the problem is to
generate art automatically, defining a math-
ematical function may prove difficult. Here a
metaheuristic is trying to paint an image that
strikingly resembles DaVinci’s Mona Lisa,
by using only coloured, overlapped triangles
(see further details in:
chriscummins.cc/s/genetics/)

On the other hand, industrial applications are facing increasingly larger

volumes of data to analyse, where exact methods are difficult to apply and

therefore metaheuristics can be considered as an alternative. Some of the

most popular are Hill Climbing, Simulated Annealing, Evolutionary Algorithms

and Estimation of Distribution Algorithms.

The core idea of these techniques is to randomly generate solutions that

are progressively improved with variation operators; a metaheuristic performs

some sort of stochastic optimisation and as such, it uses rules to guide the

search over a large set of feasible solutions with less computational effort.

This is why metaheuristics are mainly empirical approaches implemented

and tuned with computer experiments. Mastering their basic tools and imple-

mentation techniques would enable practitioners and researchers not only to

apply them on real-world engineering problems but also to experiment with

new versions of operators, representations, hybridisations or completely novel

metaheuristics.

The big picture

The essential concepts we shall cover in our exposition of metaheuristics are

summarised in the following diagram:
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Metaheuristics

Stochastic
optimisation

Trajectory
based

Population
based

Fitness
function

Search
operators

Benchmarking

As it can be seen in the picture, roughly speaking metaheuristics are

stochastic search procedures: they find solutions by randomly exploring the

space of feasible candidates and then exploiting regions of promising fitness.

Here fitness (or suitability) of a candidate solution is the only information these

algorithms use to perform the search. Fitness is computed with a cost function

usually corresponding to the optimisation objective that is defined in terms of

the measure of efficiency the problem is trying to minimise (or maximise).

Moreover, metaheuristics approaches are categorised in two large groups:

trajectory–based and population–based. The former category groups search

algorithms working around a single candidate solution that moves (changes)

along an optimisation trajectory. The changes are performed using local

search operators, that is, an algorithmic operation that produces a new can-

didate, hopefully a fitter one. Some search operators are the creation of a

random solution or the mutation of an existing solution. Usually these meta-

heuristics handle a single-point or instantaneous candidate whereas others

take advantage of a memory of visited solutions in the trajectory.

On the other hand, population–based metaheuristics maintain a list of can-

didates that are being simultaneously evaluated as potential optimal solutions.

These techniques are usually bioinspired, in the sense they are modelled after

processes occurring in nature (animal behaviour, genetics, sociodynamics,

astrophysics, etc.). Here again the fitness function ranks the suitability of each

candidate in the population to optimise the problem. And also the search op-

erators produce new candidates out of old ones. But in this case the operators

work at the individual level (mutation, crossover) or at the population level

(creation, selection).
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Lastly, notice that different metaheuristics can be applied to a particu-

lar problem. The key issues when using any of them is firstly to define the

variable problem domain (discrete or continuous), then to define a proper

candidate solution representation (variable encoding or genotype), followed

by a mapping to the actual behaviour of the solution in the problem context

(variable decoding or phenotype), and finally designing appropriate search

operators and fitness function. The empirical comparison of several meta-

heuristics in order to assess their behaviour, to adjust their parameters and to

choose the best performing model is known as benchmarking, an analogous

process to that of model selection in Machine Learning.

This chapter focuses on several instances of both, trajectory–based and

population–based metaheuristics, including Hill Climbing, Simulated Anneal-

ing, Genetic Algorithm and Estimation of Distribution Algorithms. Throughout

practical examples and exercises, the tutorial progresses from the essential to

the more elaborate concepts. Let’s begin with our first example.

Visual insights

A movie-scheduling system: part 1
Let us assume you are the owner of a local cinema screen in your neigh-
bourhood. You are a cinema–lover, so along with the obvious blockbuster
screenings, you want your regulars to have the chance to watch the best
movies in cinema history. So, every week you set aside a time slot on Sun-
days to schedule as many as possible of these movies on your screen. Thus,
this exercise is tailored towards building a movie–scheduling process by using
basic data–manipulation operations with numpy and matplotlib. The aim in the
first part of this exercise is to conduct a exploratory analysis of the history of
Oscar–winning movies.

In this exercise we will work again with the database of Oscar winner

movies from 1927 to 2018. The dataset file can be downloaded from:
https://goo.gl/MaqRKQ

name year nominat ions r a t i n g du ra t i on genre1 genre2 re lease
Shape of Water 2018 13 7.4 123 Fantasy Romance August
Moonl ight 2017 8 7.5 111 Drama November
S p o t l i g h t 2016 6 8.1 128 Crime Drama November
Birdman 2015 9 7.8 119 Comedy Drama November
12 Years Slave 2014 9 8.1 134 Biography Drama November
Argo 2013 7 7.8 120 Biography Drama October
The A r t i s t 2012 10 8 100 Comedy Drama October
The King Speech 2011 12 8 118 Biography Drama December
The Hurt Locker 2010 9 7.6 131 Drama H is to r y Ju ly
( . . . )

Dataset credit: Shehroz S. Khan @ U of Toronto
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So let’s start–off by loading the data into a Python table:

import matplotlib.pyplot as plt
import numpy as np
# Data loading
movies = np.loadtxt(’best-pictures.csv’

, dtype={’names’: (’name’,’year’,’nominations’,’rating’,’duration’,’genre1’,’
genre2’,’release’,’synopsis’)

, ’formats’: (’S30’,’u2’,’u1’,’f2’,’u2’,’S10’,’S10’,’S10’,’S255’)}, delimiter=’
,’, skiprows=1)

# Show first rows of table
print(’\n---------- First rows of table -----------’)
print(movies[:][1:5])

Out[1]:

---------- First rows of table -----------
[(’ Spotlight’, 2015, 6, 8.1, 128, ’Crime’, ’Drama’, ’November’, ’The true story of how the...’)
(’ Birdman’, 2014, 9, 7.8, 119, ’Comedy’, ’Drama’, ’November’, ’Illustrated upon the progress...’)
(’ 12 Years a Slave’, 2013, 9, 8.1, 134, ’Biography’, ’Drama’, ’November’, ’In the antebellum United...’)
(’ Argo’, 2012, 7, 7.8, 120, ’Biography’, ’Drama’, ’October’, ’Acting under the cover of...’)]

Using Python it is easy to find out which are the longest movies:

longest = np.sort(movies, order=’duration’)
print(’\n---------- Top 5 longest movies -----------’)
print(longest[["name","year","duration","genre1","genre2"]] [-1:-5:-1], sep="\n")

Out[2]:

---------- Top 5 longest movies -----------
[(’ Gone With the Wind’, 1939, 238, ’Drama’, ’Romance’)
(’ Lawrence of Arabia’, 1962, 216, ’Adventure’, ’Biography’)
(’ Ben-Hur’, 1959, 212, ’Adventure’, ’Drama’)
(’ The Godfather: Part II’, 1974, 202, ’Crime’, ’Drama’)]

Challenge 3.1
Find the top five of best–rated and most–nominated movies. Report

also the bottom five of worst–rated and least–nominated movies.

Challenge 3.2
Which are the five Oscar-winning movies with the longest titles?

Which are the five with shortest titles?

Now let’s visualise some information regarding month of release:

print(’\n---------- Distribution by month of release -----------’)
months, counts = np.unique(movies["release"], return_counts=True)
print(months, "\n", counts)
offset = np.zeros(len(months))
offset[3] = 0.2 # offsets the largest slice (i.e. ’December’)
fig, ax = plt.subplots()
ax.pie(counts, explode=offset, labels=months, autopct=’%1.1f%%’, shadow=False,

startangle=90)
ax.axis(’equal’) # ensures that pie is drawn as a circle, not oval
plt.show()

Out[3]:

---------- Distribution by month of release -----------
[’April’ ’August’ ’December’ ’February’ ’January’ ’July’ ’June’ ’March’
’May’ ’November’ ’October’ ’September’]
[ 6 4 18 8 10 2 5 2 6 11 13 3]
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Challenge 3.3
Produce a pie plot of movie distribution by genre.

NB: Notice that one movie may belong to more than one genre, so they should be

aggregated first.

Now let’s see if we can find any pattern between month of release and

movie length, using a scatter plot:

## Scatter plot of release month vs length ##
x = movies["duration"]
y = movies["release"]
names = movies["name"]
N = len(names)
colors = np.random.rand(N)
plt.scatter(x, y,
c=colors, cmap="jet")
plt.show()
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... not much really, but wouldn’t be nicer to also show the movies’ titles?

## Scatter plot with annotations ##
plt.scatter(x, y, c=colors,

cmap="jet")
for i, txt in enumerate(names):

plt.annotate(txt, (x[i],y[i]))
plt.show()

Challenge 3.4
Show the scatter plot of movie duration vs. nominations, movie dura-

tion vs. ratings and movie nominations vs. ratings.

Challenge 3.5
Can you think of a trick to visualise all the previous dimensions in a

single plot? For example, let’s say you take movie duration vs ratings

as a base plot; how can you show visually the other two dimensions

(nominations and release month)? Produce such enhanced scatter

plot for the latest 20 best movie winners.

Challenge 3.6
Let’s assume you plan to allocate only one slot of minimal duration for

a single projection of a Oscar-winning movie in your Sunday screen-

ing times. Using similar plots as those described before, how will you

choose the best-ranked, shortest movie per each genre, that will be

shown on a two–month classic–movies season?
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Challenge 3.7
Produce a scatter plot of your favorite 5 movies using their posters as

point markers (using month of release and movie length as axes).

Hint: see goo.gl/qyTCRb and goo.gl/y4xSH8 for some guidance.

Exhaustive search

Let’s try to solve the cinema-scheduling problem with a computational ap-

proach. Instead of looking at candidate solutions using visualisation tools, one

can perform an exhaustive search over the entire solution space. To do so, we

will need a mechanism to enumerate all possible combination of candidates,

in other words, a measure of order is needed. Then, an algorithm may try

every candidate in order one after the other until the optimum is found.

Assume the cinema owner will allow up to two movies to be screened every

Sunday, with the shortest running times and highest rankings. Your job is to

find the combination of movies that optimise these two criteria. For this pur-

pose, firstly we must define the search space (or solution representation) and

a quality measure (also known as fitness), and then perform and exhaustive

search of every possible combination. Since this strategy use no information

to guide the search, it is is also known as Brute Force.

So, in this problem the solution representation or encoding can be

defined as a vector of two dimensions, corresponding to the identifiers (or

indexes) of the first and second movie to be screened, within the list of 90

movies (i.e. integer numbers in the range 0, 1, 2, . . . , 89). Besides, regarding

the fitness function the criterion here can be to minimise the projection

runtime of the selected two movies. Alternatively we may combine several

optimisation criteria, e.g. minimise duration while maximising user ratings.
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The above mentioned elements are included in the following script:

import pandas as pd

## Load movies dataset ##
movies = pd.read_csv("best-pictures.csv")
print(movies.head(5))
print(movies["synopsis"][0])
print(movies.shape)

## Fitness function. Criterion: total combined duration of x = [i, j]) ##
## (solution representation is x = [i, j]; i, j are in [0,89]) ##
def fitnessDuration(x):

return movies.duration[x[0]] + movies.duration[x[1]]

## Fitness function. Criterion: minimise duration and maximise rating (raw values) ##
def fitness(x):

return movies.duration[x[0]] + movies.duration[x[1]] - movies.rating[x[0]] - movies
.rating[x[1]]

Now, most of the times we need to transform the way an arbitrary can-

didate is coded in the solution space into a representation that provides

meaningful information to the final user; we will call such a transformation

a genotype-phenotype mapping (GPM() in our code), taking inspiration on the

mechanism living organisms use to map their genetic information into visible

phenotypical traits. In our example, this mapping could simply be the printed

list of titles of the scheduled movies along with the total running time. From

here, a nested loop will suffice to enumerate all the possible combinations:

## Genotype-phenotype mapping function ##
def GPM(x):

phenotype = [movies["name"][x[0]], movies["name"][x[1]],
"Total length: " + str(movies.duration[x[0]]+movies.duration[x[1]])]

return phenotype

# Loop over all possible combinations (exhaustive enumeration) ##
for i in range(0,89):

for j in range(i+1, 89):
x = [i, j]
print(GPM(x))

Challenge 3.8
Obtain the optimal solution to the movie scheduling problem for the

combined duration and rating criteria, using exhaustive search.

Hint 1: Modify the enumeration loop shown above to keep track of the best solution

found so far.

Hint 2: Instead of using raw data, consider normalising the values of the components of

the fitness function. What strategy does obtain better results?

## Preprocess data: normalise values ##
movies["duration_norm"] = movies["duration"]/max(movies["duration"])
movies["rating_norm"] = movies["rating"]/max(movies["rating"])

## Re-define fitness function with normalised values ##
def fitness(x):

return movies.duration_norm[x[0]] + movies.duration_norm[x[1]] - movies.
rating_norm[x[0]] - movies.rating_norm[x[1]]
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Challenge 3.9
Now repeat Challenge 3.8 but this time produce a list of classic

movies to schedule in the next month (4 Sundays). For this purpose

you may try storing the intermediate results in a 90 × 90 matrix and

then find those solutions with the 4 lowest values, taking care of not

scheduling the screening of the same movie more than once.

Challenge 3.10
Define a different fitness function and run the experiment again. Is the

solution found different? Is there any difference in the search proce-

dure?

NB. Consider using runtime arguments to support your answer.

The previous exercise dealt with a problem where the variables of the

solution space were discrete. Now we shall see how to address optimisation

of continuous domain cost functions, using Brute Force in comparison to the

simplest metaheuristic of Random Search.

For this purpose let’s first consider the Sphere fitness function defined over

a vector x = (x1, x2, . . . , xd) ∈ Rd, as:

fS(x) =
d

∑
i=1

x2
i , −10 ≤ xi ≤ 10,

which in R2 can be visualised using the following Python script:

impor t numpy as np
impor t m a t p l o t l i b . pyp lo t as p l t
impor t m a t p l o t l i b .cm as cm
from m p l _ t o o l k i t s . mplot3d impor t Axes3D

x1 = np . l i nspace (−10, 10 , 101)
x2 = np . l i nspace (−10, 10 , 101)
X1 , X2 = np . meshgrid ( x1 , x2 )
F = X1**2 + X2**2
f i g = p l t . f i g u r e ( )
ax is = f i g . gca ( p r o j e c t i o n = ’ 3d ’ )
s u r f = ax is . p l o t_su r face (X1 , X2 , F , cmap=cm. j e t )
p l t . t i t l e ( " Sphere f u n c t i o n : $f_S ( \ mathbf { x } ) =\sum_{ i =1}^2 x_ i ^2$ " )
p l t . show ( )
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Challenge 3.11
Produce 3D plots of the modified Sphere function with constant offset

c ∈ Rd:
f̂S(x, c) =

d

∑
i=1

(xi − ci)
2.

For example, in R2 (d = 2), use c = [5, 5], c = [−8,−8] and c =

[2.5,−2.5].

So now let’s find the minimum of this function by Brute Force. The search

space in this case would be X = [−10, 10]2 ⊂ R2, and the cost function

would be the Sphere function, fS. One way of doing this, is looping over the

entire set of values in coordinates x1 and x2 (here a tiny tweak was included

for timekeeping of execution times):

## Sphere cost function ##
def f_sphere(x1, x2):

return x1**2 + x2**2

## Exhaustive search over coordinate arrays ##
print(’\n--- Exhaustive search over coordinate arrays ---’)
import time
t = time.time()
min_f = float(’inf’)
for a in x1:

for b in x2:
f_ab = f_sphere(a, b)
if f_ab < min_f:

argmin_f = [a, b]
min_f = f_ab

print("The minimum of function Sphere is: ", min_f, "\nI found it at location: ",
argmin_f)

print("Time elapsed: %.4f secs" % (time.time() - t))
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Out[4]:

--- Exhaustive search over coordinate arrays ---
The minimum of function Sphere is: 0.0
I found it at location: [0.0, 0.0]
Time elapsed: 0.0193 secs

Not bad, uh? In fact, you can verify that this is the global minimum by visual

inspection of the 3D plot.

Notice that single executions may result in different run times depending

on processor overload at each run; hence, it is recommended to report the

average over many repetitions (at least 30 runs):

Another way of doing it would be to exhaust all the possible combinations

of pairs within the 2D coordinate mesh-grid:

## Exhaustive search over coordinate mesh grid ##
print(’\n--- Exhaustive search over coordinate mesh grid ---’)
t = time.time()
min_f = float(’inf’)
for a, b in zip(X1,X2):

f_ab = f_sphere(a, b)
if np.min(f_ab) < min_f:

ind = np.argmin(f_ab)
argmin_f = [a[ind], b[ind]]
min_f = np.min(f_ab)

print("The minimum of function Sphere is: ", min_f, "\nFound at location: ", argmin_f)
print("Time elapsed: %.4f secs" % (time.time() - t))

Challenge 3.12
Which implementation strategy runs faster: searching over the coor-

dinate arrays or searching over the mesh grid? Support your answer

with evidence of average running times of 30 executions per strategy.

Challenge 3.13
Using Brute Force with coordinate array search, show the search

trajectory of problems in Challenge 3.11, i.e., the path joining the dif-

ferent candidate solutions found during the execution of the algorithm.

NB. Consider using a contour plot for visualisation purposes.

Now let’s see if this metaheuristic is able to find the global minimum of the

offset Sphere. For this aim you may use the following function definition:

### Sphere offset cost function ###
def f_hat_sphere(x1, x2, c1, c2):

return (x1-c1)**2 + (x2-c2)**2
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Challenge 3.14

What are the minima of f̂S(x, [5, 5]), f̂S(x, [−8,−8]) and

f̂S(x, [2.5,−2.5])? Which implementation strategy is faster? Verify

your answers using the 3D plots of Challenge 3.11 for the former

question, and average runtimes plots for the latter.

Challenge 3.15

The generalised Sphere function with offset c ∈ Rd and cutoff b ∈ R

is defined as:
f̃S(x, c, b) = f̂S(x, c) + b.

Repeat Challenge 3.14, but this time find the minimum and runtimes

for f̃S(x, c, b) with b ∈ {7,−1}.

Challenge 3.16
Describe at least two reasons why in continuous domains Exhaustive

Search may fail to achieve the optimum. Support your answer with

examples (plots, running time, etc.).

Random search

Now let’s have a look at the other simplistic metaheuristic known as Random

Search, which, as its name implies, blindly explores X by guessing repetitively

at chance new candidate solutions. The basic algorithm is shown next.

Algorithm 2: Random Search

Input: fitness(x), a cost function to optimise, x ∈ Rd

Output: xbest, the best found minimum

repeat
xbest ← create()
if fitness(xnew) < fitness(xbest) then

xbest = xnew

until runtime or evaluations budget exhausted

In this case, in order to create() at chance one candidate solution we can

use the Python pseudo–random number generator random. Recall that for

the Sphere cost function, our search space would be X = [−10, 10]2 ⊂
R2, therefore we can use the following code (the stopping criterion here is a

maximum number of iterations, max_iter):
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## Random search over [-10, 10]^2 ##
print(’\n--- Random search over [-10, 10]^2 ---’)
t = time.time()
min_f = float(’inf’)
max_iter = 10000
for i in xrange(max_iter):

a = np.random.uniform(-10, 10)
b = np.random.uniform(-10, 10)
f_ab = f_sphere(a, b)
if f_ab < min_f:

argmin_f = [a, b]
min_f = f_ab

print("The minimum of function Sphere is: %.4f" % min_f)
print("I found it at location: ", argmin_f)
print("Time elapsed: %.4f secs" % (time.time() - t))

Out[5]:

--- Random search over [-10, 10]^2 ---
The minimum of function Sphere is: 0.0047
I found it at location: [-0.02898027155331384, -0.062019730019658326]
Time elapsed: 0.0388 secs

We can see that the solution found is approximate (although it would be

correct at a precision level of two significant digits).

Challenge 3.17
How many iterations are needed for Random Search to find the global

zero minimum of fS with a rounding precision of four significant dig-

its? Support your answer by plotting the average minimum over 30

repetitions with increasing number of max_iter, contrasted to their corre-

sponding average runtimes.

Challenge 3.18
Repeat Challenge 3.13, Challenge 3.14 and Challenge 3.15 but this

time finding minima using Random Search.

An object-oriented approach

Since from now on we will study different variations of metaheuristic algo-

rithms, it may be convenient to modularise and encapsulate the common

elements related to an optimisation procedure in a single structure, which then

can be specialised to particular techniques; this is known as a class. Although

a class is a more elaborated computer concept related to Object-Oriented

Programming, for our purposes you may think of it as a template where the

basic operations needed to run a metaheuristic are defined, so as to be able

to create many copies (instances) to try it on different problems.

In order to do so, firstly we shall define the name of the class (in this case

class BruteForce for Exhaustive Search), along with a function __init__ intended

to define variables the object will use to perform the optimisation as well as

their initial values:
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## Brute force metaheuristic class definition ##
class BruteForce:

## Initialization of object attributes ##
def __init__(self, x1_range, x2_range, fitness, samples=100, max_eval=1000):

self.x1_range = x1_range # Domain of first coordinate
self.x2_range = x2_range # Domain of second coordinate
self.fitness = fitness # Fitness function to be optimised
self.max_eval = max_eval # Max number of fitness evaluations allowed
self.samples = samples # Granularity of coordinate sampling
self.xmin = [] # The candidate solution found
self.fmin = np.Inf # The cost (fitness) of candidate solution
self.xmins= [] # History of old candidate solutions (trajectory)
self.toc = 0 # Timing counter

Then the remainder operations related with the metaheuristic are imple-

mented. In this case we need two functions, one to perform the genotype-to-

phenotype mapping (which we called gpm()), and the other one to perform the

actual exhaustive search (which we called optimise()). Finally we may include

an operation just to report the results found by the metaheuristic (here called

summary()). The entire script for the class BruteForce is listed below.

import numpy as np
import time

## Brute force metaheuristic class definition ##
class BruteForce:

## Initialization of object attributes ##
def __init__(self, x1_range, x2_range, fitness, samples=100, max_eval=1000):

self.x1_range = x1_range # Domain of first coordinate
self.x2_range = x2_range # Domain of second coordinate
self.fitness = fitness # Fitness function to be optimised
self.max_eval = max_eval # Max number of fitness evaluations allowed
self.samples = samples # Granularity of coordinate sampling
self.xmin = [] # The candidate solution found
self.fmin = np.Inf # The cost (fitness) of candidate solution
self.xmins= [] # History of old candidate solutions (trajectory)
self.toc = 0 # Timing counter

## Genotype-phenotype mapping function ##
def gpm(self):

return "X = [%.2f, %.2f]. f(X) = %.5f" % (self.xmin[0], self.xmin[1], self.fmin
)

## Optimisation procedure ##
def optimise(self):

x1 = np.linspace(self.x1_range[0], self.x1_range[1])
x2 = np.linspace(self.x2_range[0], self.x2_range[1])
tic = time.time()
for a in x1:

for b in x2:
xnew = [a, b]
fnew = self.fitness(xnew)
if fnew < self.fmin:

self.xmin, self.fmin = xnew, fnew ## New candidate solution
self.toc = time.time() - tic

## Report results ##
def summary(self):

print(’\n[%s] Candidate minimum of <%s>: %s’ % (self.__class__.__name__, self.
fitness.__name__, self.gpm()))

print(’[%s] Runtime: %.4f s. Updates: %d. Evaluations left: %d’ % (self.
__class__.__name__, self.toc, len(self.xmins), self.max_eval))

## End of class ##
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We are ready to use the class to create two copies (or objects in program-

ming terms) that solve two different problems, Sphere fS(x) y offset Sphere
f̂S(x, [2.5,−2.5]):

## Problem definitions: Sphere and offset Sphere ##
def f_sphere(x):

return np.sum(np.power(x, 2))

c = [2.5, -2.5] # Modify to define functions with different offsets
def f_sphere_offset(x):

return (x[0]-c[0])**2 + (x[1]+c[1])**2

## Main program that creates two brute force objects, and have them solving the
problems ##

bf1 = BruteForce([-10, 10], [-10, 10], f_sphere)
bf1.optimise()
print(’[BruteForce] Candidate minimum of <%s> is %s’ % (bf1.fitness.__name__, bf1.gpm()

))
print(’Runtime: %.4f s\n’ % bf1.toc)

bf2 = BruteForce([-10, 10], [-10, 10], f_sphere_offset)
bf2.optimise()
print(’[BruteForce] Candidate minimum of <%s> is %s’ % (bf2.fitness.__name__, bf2.gpm()

))
print(’Runtime: %.4f s\n’ % bf2.toc)

Out[6]:

[BruteForce] Candidate minimum of <f_sphere> is X = [-0.20, -0.20]. f(X) = 0.08330
Runtime: 0.0134 s

[BruteForce] Candidate minimum of <f_sphere_offset> is X = [2.65, 2.65]. f(X) = 0.04686
Runtime: 0.0029 s

Challenge 3.19
Notice that Brute Force finds the most proximate solution to the actual

minimum coordinates, up to the degree of precision allowed for the

sampling of the coordinate vectors. Modify the previous class defini-

tion to allow the user to define the sampling precision with a variable

called samples in the initialisation of the class. How does sampling pre-

cision relates to execution time? Support your answer with graphical

plots.

Challenge 3.20
Modify also the Brute Force class definition to keep track of the opti-

misation trajectory as well as the number of updates that were made

during such trajectory.

Challenge 3.21
Modify additionally the Brute Force class definition to make the algo-

rithm to stop until certain number max_eval of evaluations of the fitness

function has been reached.
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An interesting feature of Object Oriented Programming is the possibility

of reusing previously implemented code to add new functionality to your

programs. This is accomplished with a inheritance mechanism, which likewise

it happens in living organisms, means that a “child” class can inherits the

traits and behaviour of a “mother” class. Given that in Random Search we

need to use similar variables (range, max_eval, xmin, toc, etc.) and functions (init

(), gpm(), summary(), but a different search procedure (optimise()) compared to

Brute Force, we shall resort to the inheritance mechanism to re-implement it

in an object-oriented fashion. In Python this is accomplished during the class

definition by indicating in parenthesis the base class from which the new class

is deriving, as it can be seen in the next script.

import numpy as np
import time

from bruteforce import BruteForce

## Random Search class definition: Derives from BruteForce (inheritance) ##
class RandomSearch(BruteForce):

## Creation of a random solution ##
def create(self):

x1 = np.random.uniform(self.x1_range[0], self.x1_range[1])
x2 = np.random.uniform(self.x2_range[0], self.x2_range[1])
return [x1, x2]

## Optimisation procedure ##
def optimise(self):

self.xmin = self.create()
self.fmin = self.fitness(self.xmin)
tic = time.time()
while self.max_eval > 0:

xnew = self.create() ## The core RS exploring operator
fnew = self.fitness(xnew)
self.max_eval -= 1
if fnew < self.fmin:

self.xmin, self.fmin = xnew, fnew ## New candidate solution update
self.xmins.extend([self.xmin]) ## Trajectory update

self.toc = time.time() - tic

## End of class ##

Here, a novel exploring operator called create(), which does not exist in

the base BruteForce class, was defined with the purpose of randomly sampling

a new candidate from the solution space. Notice also that the optimisation

procedure differs a little bit from BruteForce, as it loops searching for solutions

until the max_eval number of evaluations is exhausted, and for this reason we

need to re-write it (or overload it, in programming jargon). Now, let’s use our

two object-oriented metaheuristics (BruteForce, RandomSearch) to solve the same

offset Sphere f̂S(x, [2.5,−2.5]) problem, and see the differences:

bf = BruteForce([-10, 10], [-10, 10], f_sphere_offset, samples=20, max_eval=100000)
bf.optimise()
bf.summary()

for i in range(3):
rs = RandomSearch([-10, 10], [-10, 10], f_sphere_offset, max_eval=100000)
rs.optimise()
rs.summary()
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Out[7]:

[BruteForce] Candidate minimum of <f_sphere_offset>: X = [2.65, -2.65]. f(X) = 0.04686
[BruteForce] Runtime: 0.0056 s. Updates: 183. Evaluations left: 95000

[RandomSearch] Candidate minimum of <f_sphere_offset>: X = [2.49, -2.51]. f(X) = 0.00024
[RandomSearch] Runtime: 0.3881 s. Updates: 15. Evaluations left: 0

[RandomSearch] Candidate minimum of <f_sphere_offset>: X = [2.50, -2.48]. f(X) = 0.00057
[RandomSearch] Runtime: 0.4236 s. Updates: 8. Evaluations left: 0

[RandomSearch] Candidate minimum of <f_sphere_offset>: X = [2.51, -2.48]. f(X) = 0.00065
[RandomSearch] Runtime: 0.3860 s. Updates: 9. Evaluations left: 0

Observe that we have run a RandomSearch object several times, since because

of the stochastic nature of its search procedure, it produces different results in

each execution. It is clear that BruteForce exhausted all the coordinate combina-

tions at the given sampling precision while saving some fitness evaluations (at

that same precision). On the other hand, RandomSearch exhausted all the fitness

evaluations allocated, consuming more runtime along the way. Besides, the

number of updates of candidate solutions (or trajectory) is different in each

metaheuristic, as it is so the final resulting mininum.

Challenge 3.22
Fiddle around with the parameters of the objects BruteForce and

RandomSearch so as to get the global zero minimum of fS with a rounding

precision of four significant digits. Contrast the performance of runtime

and fitness evaluations of both metaheuristics as you experiment with

such parameters.

We can actually plot the trajectory of the optimisation search with the

following script:

X, Y = np.meshgrid(np.linspace(-10, 10, 101), np.linspace(-10, 10, 101))
Z = (X - 2.5)**2 + (Y + 2.5)**2
c = [’b’, ’g’, ’r’, ’y’, ’m’, ’c’, ’k’, ’w’] ## Trajectory colors
plt.figure()
plt.contourf(X, Y, Z, 40, cmap=cm.bone)
xmins = np.array(bf.xmins) ## Convert BF trajectory list to np

array
plt.plot(xmins[:, 0], xmins[:, 1], marker=’o’, c=c[0])
xmins = np.array(rs.xmins) ## Convert RS trajectory list to array
plt.plot(xmins[:, 0], xmins[:, 1], marker=’o’, c=c[i+1])
plt.show()

The following plot show the trajectories of the BruteForce object (blue) and

the three RandomSearch objects (red, green, yellow). The search space landscape

is shown in 2D as a contour plot, where darker areas correspond to lower

values of the offset Sphere f̂S(x, [2.5,−2.5]) problem. It is clear that in fact,

the four objects converged to the global minimum located at [2.5,−2.5].
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Hill Climbing

So far we have addressed the problem of finding an optimum of a function by

evaluating the fitness of a candidate in a solution space and then moving for-

ward to search for another, better candidate. For this reason this methods are

called single point or trajectory–based metaheuristics. The two methods we

have seen, however, are not useful for practical purposes: Brute Force would

become unfeasible in large solution spaces or high–dimensional fitness func-

tions, whereas Random Search attempts to blindly search the space without

actually using any structure information given by the fitness function; if lucky

enough it would just “guess” an approximate good solution. In the following,

we will study an smarter approach.

Hill Climbing, as its names suggests, is a metaheuristic taking inspiration

from the sport of alpinism, that is, the activity of climbing mountains. Facing

the challenge of ascending to the summit of a big mountain (see illustration

below), what is the approach taken by alpinists?

Assuming they have no map or instruments to guide them through their

route apart from an altimeter (an instrument that measures the altitude they

are located above ground level), surely the best they can do starting from the

initial point of their route, is to jump up to the next reachable peak. Then, to

look around if there is another bigger peak (one with higher altitude) around

and climb up to it. And then keep doing this climbing-to-the-next-nearest-

bigger-peak until the reach the summit or they are exhausted and have to

stop.
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Well, this is exactly what the Hill Climbing algorithm does. It keeps mak- Without a map or GPS, alpinists try to reach
the summit by increasingly jumping from
lower peaks to the next higher reachable
peak.

ing short jumps from one candidate solution to the next, by looking around

the neighbourhood of the current point, whilst using the fitness function as

altimeter to measure the next point where to climb to. This “looking around”

operation is also known as local search. The basic algorithm is shown next.

Algorithm 3: Hill Climbing

Input: fitness(x), a cost function to optimise, x ∈ Rd

Output: xbest, the best found minimum

xbest ← create()
repeat

xnew ←mutate(xbest)

if fitness(xnew) < fitness(xbest) then
xbest = xnew

until runtime or evaluations budget exhausted

So, the Hill Climbing algorithm involves using a local search operator that

is denoted as mutate(). This operator basically cause to jump around the

current solution towards other candidate solutions within its neighbourhood.

In a continuous search space such as Rd, said operation can be done by

moving forwards or backwards a small step in each d dimension of the current

solution. We can therefore add a positive or negative small random value, for

example generated with a Gaussian normal distribution. The Python script

implementing this metaheuristic is the following, where again we have taken

advantage of the inheritance mechanism:
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import numpy as np
import time
from rs import RandomSearch

## HillClimbing class definition: Inherits from RandomSearch ##
class HillClimbing(RandomSearch):

## Initialization of class attributes ##
def __init__(self, x1_range, x2_range, fitness, samples=100, max_eval=1000, step

=0.1):
RandomSearch.__init__(self, x1_range, x2_range, fitness, samples, max_eval)
self.step = step # Length of the mutation step

## Tweaks a little bit a candidate solution randomly ##
def mutate(self, x):

return x + np.random.randn(2)*self.step

## Optimisation algorithm ##
def optimise(self):

self.xmin = self.create()
self.fmin = self.fitness(self.xmin)
tic = time.time()
while self.max_eval > 0:

xnew = self.mutate(self.xmin) ## The core HC exploring operator
fnew = self.fitness(xnew)
self.max_eval -= 1
if fnew < self.fmin:

self.xmin, self.fmin = xnew, fnew ## New candidate solution update
self.xmins.extend([self.xmin]) ## Trajectory update

self.toc = time.time() - tic

## End of class ##

So let’s see how HillClimbing compares to BruteForce and RandomSearch in

solving the offset Sphere f̂S(x, [2.5,−2.5]) problem:

bf = BruteForce([-10, 10], [-10, 10], f_sphere_offset, samples=20, max_eval=100000)
bf.optimise()
bf.summary()

for i in range(3):
rs = RandomSearch([-10, 10], [-10, 10], f_sphere_offset, max_eval=100000)
rs.optimise()
rs.summary()

for i in range(3):
hc = HillClimbing([-10, 10], [-10, 10], f_sphere_offset, max_eval=1000, step=.25)
hc.optimise()
hc.summary()

Out[8]:

[BruteForce] Candidate minimum of <f_sphere_offset>: X = [2.63, -2.63]. f(X) = 0.03463
[BruteForce] Runtime: 0.0009s. Updates: 51. Evaluations left: 99600

[RandomSearch] Candidate minimum of <f_sphere_offset>: X = [2.38, -2.48]. f(X) = 0.01388
[RandomSearch] Runtime: 0.0481s. Updates: 16. Evaluations left: 0

[RandomSearch] Candidate minimum of <f_sphere_offset>: X = [2.59, -2.55]. f(X) = 0.01009
[RandomSearch] Runtime: 0.0532s. Updates: 6. Evaluations left: 0

[RandomSearch] Candidate minimum of <f_sphere_offset>: X = [2.47, -2.57]. f(X) = 0.00665
[RandomSearch] Runtime: 0.0496s. Updates: 6. Evaluations left: 0

[HillClimbing] Candidate minimum of <f_sphere_offset>: X = [2.49, -2.50]. f(X) = 0.00015
[HillClimbing] Runtime: 0.0067s. Updates: 42. Evaluations left: 0

[HillClimbing] Candidate minimum of <f_sphere_offset>: X = [2.49, -2.50]. f(X) = 0.00012
[HillClimbing] Runtime: 0.0090s. Updates: 20. Evaluations left: 0

[HillClimbing] Candidate minimum of <f_sphere_offset>: X = [2.50, -2.51]. f(X) = 0.00019
[HillClimbing] Runtime: 0.0080s. Updates: 36. Evaluations left: 0
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It can be seen in the previous output that the different executions of

HillClimbing manage to achieve a better solution both closer to the actual

optimum and more efficient in runtime. The behaviour is more clear if we plot

the trajectories (HillClimbing in magenta); evidently, it is exploiting the structure

given by the fitness function:

Challenge 3.23
How does the choice of max_eval and step affect the behaviour of

HillClimbing? Try different values for max_eval ∈ {103, 104, 105, 106}
and step ∈ {10−2, 10−1, 100, 101} and draw your conclusions using

plot evidence.

A variation of Hill Climbing checks for the highest peak around the current

solution before doing the next jump, i.e. the Steepest Ascent Hill Climbing:

Algorithm 4: Steepest Ascent Hill Climbing

Input: fitness(x), a cost function to optimise, x∈Rd, n number of tweaks

Output: xbest, the best found minimum

xbest ← create()
repeat

xnew ←mutate(xbest)

repeat n times
xaux ←mutate(xbest)

if fitness(xaux) < fitness(xnew) then
xnew = xaux

if fitness(xnew) < fitness(xbest) then
xbest = xnew

until runtime or evaluations budget exhausted
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In Python using inheritance, we can implement Steepest Ascent Hill Climb-

ing as follows.

## Steepest Ascent Hill Climbing metaheuristic ##
class SteepestHC(HillClimbing):

## Initialization of class attributes ##
def __init__(self, x1_range, x2_range, fitness, samples=100, max_eval=1000, step

=0.1, n_tweaks=10):
HillClimbing.__init__(self, x1_range, x2_range, fitness, samples, max_eval,

step)
self.n_tweaks=n_tweaks

## Optimisation algorithm ##
def optimise(self):

self.xmin = self.create()
self.fmin = self.fitness(self.xmin)
tic = time.time()
while True:

xnew = self.mutate(self.xmin)
fnew = self.fitness(xnew)
self.max_eval -= 1
for i in range(self.n_tweaks): ## Best nearby peak look-around

xaux = self.mutate(self.xmin)
faux = self.fitness(xaux)
self.max_eval -= 1
if faux < fnew:

xnew, fnew = xaux, faux
if (self.max_eval) < 1: ## Max_eval exceeded ending

self.toc = time.time() - tic
return

if fnew < self.fmin:
self.xmin, self.fmin = xnew, fnew ## New candidate solution update
self.xmins.extend([self.xmin]) ## Trajectory update

## End of class ##

Here’s the outcome of HillClimbing and SteepestHC in solving the Offset
sphere f̂S(x, [2.5,−2.5]) problem:

for i in range(3):
hc = HillClimbing([-10, 10], [-10, 10], f_sphere_offset, max_eval=1000, step=.25)
hc.optimise()
hc.summary()

for i in range(3):
steephc = SteepestHC([-10, 10], [-10, 10], f_sphere_offset, max_eval=2000, step

=.25, n_tweaks=40)
steephc.optimise()
steephc.summary()

Out[9]:

[HillClimbing] Candidate minimum of <f_sphere_offset>: X = [2.50, -2.50]. f(X) = 0.00003
[HillClimbing] Runtime: 0.0087s. Updates: 48. Evaluations left: 0

[HillClimbing] Candidate minimum of <f_sphere_offset>: X = [2.50, -2.50]. f(X) = 0.00001
[HillClimbing] Runtime: 0.0063s. Updates: 67. Evaluations left: 0

[HillClimbing] Candidate minimum of <f_sphere_offset>: X = [2.51, -2.48]. f(X) = 0.00035
[HillClimbing] Runtime: 0.0091s. Updates: 61. Evaluations left: 0

[SteepestHC] Candidate minimum of <f_sphere_offset>: X = [2.50, -2.50]. f(X) = 0.00002
[SteepestHC] Runtime: 0.0165s. Updates: 27. Evaluations left: 0

[SteepestHC] Candidate minimum of <f_sphere_offset>: X = [2.50, -2.50]. f(X) = 0.00001
[SteepestHC] Runtime: 0.0132s. Updates: 24. Evaluations left: 0

[SteepestHC] Candidate minimum of <f_sphere_offset>: X = [2.50, -2.50]. f(X) = 0.00000
[SteepestHC] Runtime: 0.0121s. Updates: 17. Evaluations left: 0
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Challenge 3.24
Find a choice of parameters which allow SteepestHC to clearly outper-

form HillClimbing. Support your answer using runtime plots.

The local search loop of Steepest Ascent Hill Climbing favours exploitation

instead of exploration, that is, it looks around the neighbourhood of the current

candidate to choose a higher peak to climb on, assuming no further regions

of higher peaks exists further away. A variation of this algorithm would be to

allow the climber to explore other intermediate peaks even if it moves away

from the current highest solution; in order to do not get ashtray and forgive

the best found solution, it can leave a mark in the highest visited peak, that is,

keep it in memory while it explores other promising peaks. We shall call this

variation Steepest Ascent Hill Climbing with Replacement :

Algorithm 5: Steepest Ascent Hill Climbing with Replacement

Input: fitness(x), a cost function to optimise, x∈Rd, n number of tweaks

Output: xbest, the best found minimum

xbest ← xnew ← create()
repeat

xtmp ←mutate(xnew)

repeat n times
xaux ←mutate(xnew)

if fitness(xaux) < fitness(xtmp) then
xtmp ← xaux

xnew ← xtmp

if fitness(xnew) < fitness(xbest) then
xbest ← xnew

until runtime or evaluations budget exhausted

Challenge 3.25
Implement the class Steepest Ascent Hill Climbing with Replace-

ment (ReplacementHC) and show how its behaviour differs from the other

versions of Hill Climbing on solving the Generalised Sphere problem.

A final variation of Hill Climbing is intended to avoid premature conver-

gence to a local minimum due to a poor choice of the initial random candidate.

The idea would be then to restart the climbing route (exploration) after certain

epoch of local search (exploitation). An implementation of this new variation

should add a new parameter N representing an epoch (number of function

evaluations) of exploitation before the exploration restarts, as follows:
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Algorithm 6: Hill Climbing with Restarts

Input: fitness(x), a cost function to optimise, x∈Rd

Input: n number of tweaks, N epoch length, N � n
Output: xbest, the best found minimum

xbest ← xnew ← create()
i← N
repeat

repeat n times
xaux ←mutate(xnew)

i← (i− 1)
if fitness(xaux) < fitness(xnew) then

xnew ← xaux

if fitness(xnew) < fitness(xbest) then
xbest ← xnew

if i ≤ 0 then /* restart condition */

xnew ← create()
i← N

until runtime or evaluations budget exhausted

Challenge 3.26
Implement the class Hill Climbing with Restarts (name it RestartHC) and

show how its behaviour differs from the other versions of Hill Climbing

on solving the Generalised Sphere problem.

The family of Sphere problems are well-behaved functions with a nice and

sharp gradient that is conveniently exploited by the Hill Climber -type meta-

heuristics. What would happen with other slightly more difficult problems?

Let’s consider the Inverted Hat problem The mathematical definition of

the Inverted Hat is given by a Gaussian cost function defined over a vector

x = (x1, x2, . . . , xd) ∈ Rd, with mean µ ∈ Rd and standard deviation

σ ∈ R, as follows:

fǦ(x) = −e−
‖x−µ‖2

σ2

The Inverted Hat problem looks like the following picture.
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To implement this function in Python, we can use the built-in operations of

the numpy library to compute the exponential function (np.exp()) and the norm of

an array (np.linalg.norm()):

## Inverted Gaussian function definition (unimodal) ##
def f_gaussian(x, mu=[0, 0], sigma=1):

return -np.exp(-(np.linalg.norm(np.array(x)-mu)/sigma)**2)

Defined in this way, f_gaussian(x) evaluates the function on a single point

x. Alternatively, we can take advantage of the numpy capability to evaluate the

function on multiple points if passed as a bi-dimensional matrix X; in this case,

we need to specify in which dimension np.linalg.norm() will operate, using the

parameter axis=0 to indicate rows or axis=1 to indicate columns. The modified

Python definition of the Inverted Hat function will look like it follows:

## Inverted Gaussian function definition (unimodal) ##
def f_gaussian(x, mu=[0, 0], sigma=1):

axis = 0 if (np.size(x) == 2) else 1 # this is the axis numpy uses to compute norm
return -np.exp(-(np.linalg.norm(np.array(x)-mu, axis=axis)/sigma)**2)

The latter definition can now be used for plotting purposes, as we can re-

shape the meshgrid coordinates into a matrix to be passed as the x parameter

of the f_gaussian() function in order to evaluate all the Inverted Hat function

values within the [−10, 10]2 subspace; this time, we will use the meshgrid

operations available in the numpy library, as it is shown next. When executed,

this script produces the plot showed previously.
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## Let’s plot the inverted Gaussian ##
X = np.mgrid[-10:10:.1, -10:10:.1] # Coordinates meshgrid
Xl = X.T.reshape(-1,2) # Convert to a coordinates 2D matrix
Zl = f_gaussian(Xl, sigma=3) # Evaluates unimodal Gaussian on coordinates
Z = Zl.reshape(X[0].shape) # Convert back function values to meshgrid
fig = plt.figure()
axis = fig.gca(projection=’3d’)
surf = axis.plot_surface(X[0], X[1], Z, cmap=cm.jet)
plt.title("$f_G(\mathbf{x}) = -e^{-\\frac{\|\mathbf{x}-\mathbf{\mu}\|^2}{\mathbf{\sigma

}^2}}$")
plt.show()

Let’s move on to define a more complicated optimisation function on the

basis of the Inverted Hat. This time our problem will include two local minima,

let’s say an inverted hat with Two Peaks (also known as inverted bimodal

Gaussian):

fǦǧ(x) = −e
−
(

1
σ2

G
‖x−µG‖2

)
− e
−
(

1
σ2

g
‖x−µg‖2

)

We can define the Two Peaks function easily in Python, by invoking twice

the previously defined inverted Gaussian (unimodal) with different mean and

standard deviation values:

## A bimodal inverted Gaussian: landscape with two peaks ##
def f_two_peaks(x):

return f_gaussian(x, mu=[5.01, 4.09], sigma=2) + 0.5*f_gaussian(x, mu=[-6.55,
-1.48], sigma=1.5)

The corresponding plot is the following:

Challenge 3.27
Write and execute the Python script to produce the previous Two
Peaks function plot.
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Challenge 3.28
Define several versions of three, four and five-peaks Inverted Hat
functions and visualise them using Python.

Now let’s see if our Hill Climbers metaheuristics are good at solving the

Two Peaks problem as efficiently as the Sphere problems. Remember that

because of the stochastic nature of this algorithms one single execution is not

sufficient to obtain a definite answer, so we need to repeat the experiments

several times and report average behaviour. We shall keep the results of

these repetitions in auxiliary lists stats for function minima and number of

updates, and xstar for the actual minimum location found in each execution.

## Now let’s see the HillClimbers in action!!! ###
reps = 1000 # Number of repetitions
stats, xstar = [], []; # Auxiliary lists to store results
for i in range(reps):

hc1 = HillClimbing([-10, 10], [-10, 10], f_two_peaks)
hc1.optimise()
hc1.summary()
stats.append([hc1.fmin, len(hc1.xmins)])
xstar.append(hc1.xmin)

for i in range(reps):
hc2 = SteepestHC([-10, 10], [-10, 10], f_two_peaks)
hc2.optimise()
hc2.summary()
stats.append([hc2.fmin, len(hc2.xmins)])
xstar.append(hc2.xmin)

for i in range(reps):
hc3 = ReplacementHC([-10, 10], [-10, 10], f_two_peaks)
hc3.optimise()
hc3.summary()
stats.append([hc3.fmin, len(hc3.xmins)])
xstar.append(hc3.xmin)

One convenient way of comparing how each algorithm performed (apart

from examining the summary() reports printed in the console), is to plot the

statistics as stacked histograms:

## Now plot the fmin stats ##
stats = np.array(stats)
fmins = stats[:,0].reshape(reps, 3)
updates = stats[:,1].reshape(reps, 3)
labels = ["HillClimbing", "SteepestHC", "ReplacementHC"]
colors = [’y’,’b’,’r’]

plt.figure()
plt.hist(fmins, color=colors, label=labels)
#plt.yticks(range(reps))
plt.legend()
plt.title("Histogram of fmin values in 1000 runs")
plt.show()
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Out[10]:

We can see here that basically the three algorithms perform very similar.

They are able to discover both minima of the function (with values -1.0 and

-0.5). However, about 40% of the times they got stuck into the local minimum

(0.5), whereas 60% of the times they successfully reached the global mini-

mum (1.0). Now let’s have a look at the number of updates:

## Now updates stats ##
plt.figure()
plt.hist(updates, color=colors, label=labels)
#plt.yticks(range(reps))
plt.legend()
plt.title("Histogram of number of updates in 1000 runs")
plt.show()

Out[11]:
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The latter plot suggests that SteepestHC and ReplacementHC are in fact more

efficient in obtaining the solution with a fewer number of updates (≤ 50).

Challenge 3.29
Now compare the accuracy of the Hill Climbers algorithms in find-

ing the solution of f_two_peaks(). Notice that in this example the local

minimum is located in µg = [−6.55,−1.48], whereas the global mini-

mum is in µG = [5.01, 4.09]. How can you nicely report the precision

obtained by each algorithm (that is, the degree of proximity achieved)?

Random Walk

A Random Walk (also known as Drunkard’s walk, you will see why later),

is a search strategy much like Random Search with a little improvement in

the form of a memory. Here, the algorithm basically searches around the

current candidate blindly, moving forwards, backwards or sideways randomly

accepting every new candidate solution with no questions asked, but taking

care of remembering the best-so-far visited peak. The algorithm is defined

below, with its Python implementation further down (yes, inheritance again!).

Algorithm 7: Random Walk

Input: fitness(x), a cost function to optimise, x ∈ Rd

Output: xbest, the best found minimum

xbest ← xnew ← create()
repeat

xnew ←mutate(xnew)

if fitness(xnew) < fitness(xbest) then
xbest = xnew

until runtime or evaluations budget exhausted

## Random Walk class implementation ##
class RandomWalk(HillClimbing):

## Optimisation procedure ##
def optimise(self):

xnew = self.create()
fnew = self.fitness(xnew)
self.xmin, self.fmin = xnew, fnew
tic = time.time()
while self.max_eval > 0:

xnew = self.mutation(xnew)
fnew = self.fitness(xnew)
self.max_eval -= 1
if fnew < self.fmin:

self.xmin, self.fmin = xnew, fnew ## New candidate solution update
self.xmins.extend([self.xmin]) ## Trajectory update

self.toc = time.time() - tic

## End of class ##
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Challenge 3.30
Perform again these experiments, but for the multi-peak functions

you defined in Challenge 3.28. This time use the full battery of

metaheuristics you know up to this point: BruteForce, RandomSearch,

HillClimbing, SteepestHC, ReplacementHC, RestartHC, RandomWalk. What overall

conclusion can you draw from your results?

NB. In order to obtain a fair comparison make sure you use the same running parame-

ters for all the algorithms.

Challenge 3.31
Come up with a new variation of Hill Climbing intended to escape

more efficiently from local minima. Name it in your honour, implement

it in Python and show how this new metaheuristic is advantageous

compared to the other Hill Climbers of Challenge 3.30. You may

use again for this aim, the multi-peak functions you defined in Chal-
lenge 3.28.

Simulated Annealing

Simulated Annealing is a metaheuristic inspired by the metallurgy industry

where metal pieces are melted seeking to obtain a more robust structure

resistant to cracking. Roughly speaking, the process starts by heating the ma-

terial at high temperatures, allowing its molecules to acquire a large amount

of kinetic energy that causes them to move around randomly and quickly,

adopting multiple coupling configurations. Later on, the process continues by

allowing the material to cool down slowly; with this decrease in temperature,

the molecules calm down their movement adopting configurations that min-

imise the energy and maximise its stability. The final structure assumed by

the molecules at the end of the process guarantees to improve the strength

properties of the metal minimising the risks of susceptibility to fractures.

The cooling mechanism of the annealing process combines the two con-

cepts applied in metaheuristics to search the space of candidate solutions:

exploration and exploitation. The exploration phase occurs when the tempera-

ture is high, allowing the algorithm to evaluate candidates even in sub-optimal

regions of the search space. The exploitation phase occurs in the cooling

down phase, when new configurations are accepted only with a decreasing

probability depending on the temperature. In algorithmic terms, this is imple-

mented using a probability of accepting a suboptimal candidate depending on

a variable that simulates the behaviour of the annealing temperature. Thus,

the temperature is varied according to a cooling schedule that starts with a

high value and decreases subsequently with time. In this way, the lower the

temperature the smaller chances a suboptimal candidate will be accepted.
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The pseudocode of the Simulated Annealing algorithm is showed next.

Algorithm 8: Simulated Annealing

Input: fitness(x), a cost function to optimise, x ∈ Rd

Input: cooldown(T), a temperature schedule T ≤ Tmax ∈ R

Output: xbest, the best found minimum

T ← Tmax

xbest ← xnew ← create()
repeat

xaux ←mutate(xnew)

∆E← fitness(xaux) − fitness(xnew)

p← random(0, 1)

if ∆E < 0 or p < e−
∆E
T then

xnew = xaux

T ← cooldown(T)
if fitness(xnew) < fitness(xbest) then

xbest ← xnew

until runtime or evaluations budget exhausted

Here the cooldown() schedule can be simulated with any monotonous

decreasing function of time. Take for example the following function:

g(t) = (1− ε)t × Tmax

If we set ε = 0.0001, the temperature will cool down as shown in the following

plot.
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Challenge 3.32
Plot other alternative temperature schedule functions. Consider for

example the logarithmic schedule:

g(t) = Tmax/ log t,

or the linear schedule:

g(t) = (1− t/Tmax)× Tmax

Moreover, propose your own decreasing schedule.

Challenge 3.33
Implement the SimulatedAnnealing class for this metaheuristic. Evaluate

its performance in the multi–peak functions of Challenge 3.28.

Challenge 3.34
Recall the problem of scheduling a cycle of Oscar–winning movies in

your cinema screen. Let’s say you decided to set apart a time slot of

6 hours on next Sunday to screen a Oscar–winning movies marathon.

You want of course, to optimise this time slot to schedule as many as

possible best–rated and most–nominated movies.

Start–off by defining a search space X, candidate encoding and cost

function f (x), x ∈ X that allow you to optimise this problem. Then use

all the Hill Climbers, Random Walk and Simulated Annealing meta-

heuristics to report a solution. Notice the order in which movies are

screened does not matter.

NB1: Since all but Brute Force are stochastic metaheuristics, their results may vary

depending on the chosen initial candidate solution. Therefore you should repeat the

experiments several times before reporting your final answers.

NB2: The create() and mutation() functions in the class definitions should be adjusted

to the discrete nature of the search space of this problem.

Challenge 3.35
Use the metaheuristics in Challenge 3.34 to report the optimum to the

problem f̃S(x, [5.56,−7.77], 100.93). Are all metaheuristics able to

find the actual minimum to a rounding precision of two significant dig-

its? If the answer is not, try tuning the execution parameters to make

them more effective (hint: use different values for samples, max_eval,

n_repeats). What conclusion do you reach regarding which metaheuris-

tic is better? (more precise, more runtime efficient, etc.).

NB: Support your answers using plots (runtime vs parameters, trajectories) and tables

(evaluations, success rate)
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Genetic Algorithms

Genetic Algorithms are optimisation techniques inspired in the Darwinian

ideas of the origin of species: (1) organisms within a species reproduce and

their offspring phenotypes may exhibit tiny variations with respect to those

of their parents; and (2) variations that increase their chances of survival are

favoured by nature since as a result, such organisms are able to live longer

and reproduce more. Natural selection as mechanism of natural
evolution: character variation is inherited
from parents to offspring; these diversity is
filtered by the selective pressure of nature
(predators, accidents, climate catastrophes)
so as to favour variations that let the or-
ganisms to adapt and survive to their living
conditions.

In the above illustration, the characteristic
trait of brown beetles gives them an evolu-
tionary advantage to survive over their green
cousins which are food source of hungry
birds and were also affected by unfortunate
events. As a result, the brown beetle pop-
ulation manage to survive. Images credit:
University of California Museum of Palaeon-
tology, see: evolution.berkeley.edu

This metaphor led to the design of the computational method for optimi-

sation known as the Genetic Algorithm (GA). A GA’s goal is to minimise (or

maximise) a fitness function by means of a population that evolves during

many generations, and whose individuals reproduce, recombine, mutate and

die, while finding adaptations (solutions) to the optimisation problem along the

way. Hence the evolutionary undertone of the algorithm. John Holland and his students in Michigan
invented the GAs; David Goldberg and
collaborators in Illinois are recognised
pioneers in the field. For more information,
see: http://illigal.org

From a computational point of view, an individual is represented as an

array of “genes” or encoding variables (“chromosome”) affecting the fitness

function. By applying genetic operators (crossover, mutation) to a population

of these chromosomes, an offspring is produced and the fittest individuals are

selected to continue to the next generation. Better adaptations (that is, more In the GA, ”nature” or the evolutionary
pressure representing predators, climate
changes, limitation of food, disasters, cosmic
rays, etc., must be carefully designed
within the cost function that evaluates the
fitness of a particular candidate to solve the
optimisation problem

suitable solutions) yielding better chances of surviving in the environment (that

is, obtaining higher fitness scores) are found, as the “selection of the fittest”

pressure guides the search process.
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More specifically the algorithm loops through the following steps: (i) En-

code the initial population, (ii) Evaluate population fitness using a cost func-

tion, (iii) Apply genetic operators, (iv) Repeat until termination criteria is met,

(v) Return the best solution emerged. The pseudocode of the GA algorithm is

shown below. Applications of GA range from automated industrial design to

protein structure prediction to gene expression analysis to job-shop schedul-

ing to neural nets training to automatic software testing, just to name a few.

We remark that GA are not global optimisers;
instead they are able to find ”good enough”
local optima, depending on the design of
the chromosome, genetic operators, number
of generations, etc. Moreover, they are
stochastic in the sense that multiple runs of
the algorithm may lead to different resulting
solutions.

Algorithm 9: Genetic Algorithm
Input: n: population size, m: generations, ps, pc, pm: selection,

crossover and mutation rates.

Input: fitness(x): a cost function to optimise, x ∈ P : a chromosome

enconding, P ⊂ R`: a population of chromosomes

Output: xbest: the best found minimum

P ← initialise(n, `);
F ← fitness(P)
xbest ← create();
repeat m generations
P ′ ← selection(P ,F , ps)

P† ← crossover(P ′, pc)

P‡ ← mutation(P†, pm)

P ← P‡;
F ← fitness(P)
xbest ← update_best(P ,F , xbest)

Let’s translate the pseudocode into an initial template of the GA class in

Python. So, firstly we need to handle the running parameters:

import numpy as np
import time

## Genetic Algorithm class implementation ##

class GeneticAlgorithm():

## Initialization of algorithm parameters ##
def __init__(self, fitness, pop_size=100, max_gen=100, sol_len=10, ps=0.5, pc=0.8,

pm=0.01, max_eval=10000):
self.fitness = fitness # Fitness function to be optimised
self.max_eval = max_eval # Max number of fitness evaluations allowed
self.pop_size = pop_size # Population size (number of chromosomes)
self.max_gen = max_gen # Max number of generations to evolve
self.sol_len = sol_len # Chromosome length (number of genes)
self.ps = ps # Selection rate (proportion of survival population)
self.pc = pc # Crossover rate (probability of breeding)
self.pm = pm # Mutation rate (probability of mutating)
self.xbest = [] # The best found solution
self.fbest = np.Inf # The fitness of best solution
self.xolds = [] # History of older bests solutions
self.toc = 0 # Timing counter

(...)
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Now let’s write the main search procedure of the GA. Observe that in

accordance with the biological inspiration of the algorithm, we have renamed

such routine from optimise() to evolve(). In this case the stopping criterion

involves two conditions, either running out of the fitness evaluations budget, or

achieving the maximum allowed number of generations:

class GeneticAlgorithm():
(...)

## Optimisation algorithm ##
def evolve(self):

self.pop = self.createPop()
self.fit = self.fitness(self.pop)
self.xmin = self.create()
self.fmin = self.fitness(self.xmin)
tic = time.time()
while self.max_eval > 0 and self.max_gen > 0:

newpop = self.selection(self.pop, self.fit, self.ps)
newpop = self.crossover(newpop, self.pc)
newpop = self.mutation(newpop, self.pm)
self.pop = newpop
self.fit = self.fitness(self.pop)
self.update_best()
self.max_eval -= self.pop_size
self.max_gen -= 1

self.toc = time.time() - tic
(...)

So, the main search routine is ready, what is left to code is the implemen-

tation of the genetic operators. We shall defer this task until some of the

techniques proposed in the literature, are explained later in the text.

class GeneticAlgorithm():
(...)

## Genetic operators template ##
def createPop(self):

# ToDo: create a random initial population #
pass

def selection(self, pop, fit, ps):
# ToDo: selection operator #
pass

def crossover(self, pop, pc):
# ToDo: crossover operator #
pass

def mutation(self, pop, pm):
# ToDo: mutation operator #
pass

def update_best(self):
# ToDo: update routine #
pass

## End of class ##

Solution representation

As it was alluded before, the variables defining the optimisation problem must

be encoded in an artificial chromosome. The chromosome consists of a set

of genes (variables) located at different positions (locus), each one holding a

candidate value for the variable they represent.
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A common representation strategy uses binary arrays as chromosomes;

they codify for boolean variables. Other strategies encode solutions as arrays

of integers or decimal numbers. An in-between scheme for problems with

numerical variables is to represent them as binary–coded integers or decimals

with either fixed or floating point formats. An example of a binary chromosome

is shown below.

Each gene in a chromosome c = [c1, c2, ..., c`] will have a locus (index)

indicating its position in the array, with ` denoting the chromosome length.

Binary encoding

This is the most common solution representation, where variables are boolean

and are represented as an array of 0’s and 1’s. This was also the original

representation proposed by Holland; most of the theory behind GAs are

based on fixed-length binary chromosomes. Many of these theories have

been extended to real encoding, although they have not been studied as

thoroughly as the binary encodings. Additionally, the heuristics to determine

appropriate GA parameters (such as crossover and mutation rates), are

generally developed in the context of binary strings. So, let’s see how to

create and inspect a binary string in Python:

c = np.random.randint(2, size=sol_len)
print "A random binary chromosome: " + str(c)
print "Locations with bit on:", c==1
print "Number of bits on:", (c==1).sum()
print "Number of bits off:", (c==0).sum()

Out[12]:

A random binary chromosome: [1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0]
Locations with bit on: [ True True False False True True False True True True
True False True True True True False False True False]
Number of bits on: 13
Number of bits off: 7

Sometimes it is difficult to find an appropriate mapping of the solution

space to a binary representation, thus it may be more convenient to consider

the use of other types of encodings, such as discrete or real.

Real encoding

When the variables in the problem are defined over a continuous domain, the

most natural way of encoding a candidate solution is a direct mapping to real

values.
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Notice that a binary string may code for a real value using a floating point

representation. Their precision, however, is limited by the number of signif-

icant digits one uses during encoding. It is suggested to utilise the type of

encoding that is most natural for the problem, either binary or real-number

encoding.

Challenge 3.36
Write a Python script to generate a random chromosome with 10

real-valued numbers as genes, within the range [−15, 15]. The script

should also report the number of positive and negative genes.

Challenge 3.37
Repeat Challenge 3.36 but this time represent the genes as integer

numbers in the range [−15, 15] with a binary encoding (for example,

the integer number 7 is coded as “0111” in binary, the integer 12 is

“1100”). What would be the length of the chromosome?

NB: Here the genetic information is written in an alphabet that must be translated to a

phenotypical readable representation. Hence, it can be useful to define a genotype-to-

phenotype mapping for this task (recall the function gpm(c)).

Initial population

The first generation of a GA consist of a spontaneously-created random

population of chromosomes. So, a number of m chromosomes are generated

as uniform distributed random values according to the chosen encoding.

Other techniques include biasing the generation towards promising regions

of the solution region known beforehand, or seeding some chromosomes as

archetypes or attractors of the random generation process.

An example of a binary–coded initial population is illustrated below.

Similarly to the way we generated a single chromosome as a numpy array,

we may obtain a population of chromosomes using a binary matrix:
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pop_size = 5
pop = np.random.randint(2, size=(pop_size, sol_len))
print "A random binary population: \n\n", pop

Out[13]:

A random binary population:

[[1 0 1 0 1 0 1 0 1 1]
[1 0 0 1 1 0 0 1 0 1]
[0 1 1 0 1 1 1 0 0 0]
[0 0 1 0 0 0 1 1 0 1]
[0 0 0 0 1 1 1 0 0 0]]

Challenge 3.38
Repeat Challenge 3.36 and Challenge 3.37, this time generating a

population of 100 chromosomes. Demonstrate that the gene variation

across the population is uniform.

Hint: Plot the histogram of gene distribution per chromosome locus.

Fitness function

Also known as cost function or optimisation function, the fitness function plays

the key role of being the selective pressure in the artificial environment of

the GA, which ultimately guides the evolution of the algorithm. By evaluating

this function on a given chromosome, the GA obtains its quality at solving

the optimisation problem. For this purpose, the function firstly decodes the

underlying variables of the chromosome and then evaluates its value.

Let’s have a look at a simple example. Think of a robot designed to change

broken light bulbs on the ceiling of a room. A 7-step ladder is located below

the bulb. The robot must climb up to the top of the ladder, otherwise he would

not be able to reach the bulb socket. The problem consists of programming

the series of 7 moves needed for the robot to climb up the ladder. Assume

that our simple robot recognises only two commands: climb-up and step-

down. Let’s code each command in binary: climb-up (1) and step-down (0).
Although simple at first sight, both climbing
up one step or staying put over the ground
on a ladder, would involve extremely complex
tasks for a biped robot: that of maintaining
the equilibrium so as not to fall down. These
aspects are not considered in our abstract
example.
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For a human programmer the task is trivial: the solution to the problem is

the set of moves c? = {1, 1, 1, 1, 1, 1, 1}, since any other sequence would

fail to reach the top of the ladder. But let’s see now how a GA will solve it. For

this purpose we need to design a cost function for the problem. Let us call an

arbitrary sequence of moves (or candidate solution) as c = {c1, c2, . . . , c7},
with ci ∈ {0, 1} being the variables of the problem. Thus, the optimisation

function can be:

f (c) =
7

∑
i=1

ci

Obviously a GA is not the recommended
method to solve this trivial problem. Here
we are using it for the sake of a didactic
illustration of the algorithm.

The latter is actually a widely–used benchmark function in the GA com-

munity, known as OneMax or BitCount cost function. It basically counts the

number of bits set in the sequence; its optimal maximum is achieved when all

bits are set to one. Let’s say the GA generates a random initial population of

m = 5 candidates with ` = 7 variables. The following picture shows one such

population, with fitness for each candidate evaluated using f (ck):
In this case, one may think of candidates
{c1, c2, c3} as the sub–population of green
beetles, whereas candidates {c4, c5} as
the sub–population of brown beetles in the
didactic illustration at the beginning of the
section.

This particular fitness function is actually very easy to implement using

Python:

fit = pop.sum(axis=1)
print pop, fit

Out[14]:

[[1 0 1 0 1 0 1 0 1 1]
[1 0 0 1 1 0 0 1 0 1]
[0 1 1 0 1 1 1 0 0 0]
[0 0 1 0 0 0 1 1 0 1]
[0 0 0 0 1 1 1 0 0 0]] [6 5 5 4 3]

Genetic operators

The genetic operators are the exploration and exploitation techniques used to

conduct the search for better solutions. These techniques are inspired in the

ideas of the Darwinian theory of natural selection. They are mainly grouped in

three operators: selection, reproduction (or crossover) and mutation.
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Selection

The natural selection principle states that the fittest individuals in a population

are able to reproduce more successfully because their adaptation skills allow

them to outlive less skilful individuals. In a GA, the latter means that the fitter

the candidate is at optimising the problem (i.e. the higher value it obtains

in the fitness function), the better chances it will have to mate with other fit

candidates to produce offspring. Such a selection process can be simulated

with different techniques that are described below.

• Tournament: Two candidates are chosen randomly in a number of rounds

(this number is usually half the population size, i.e. n
2 ). In each round, they

compete by evaluating their fitness function: the winner is selected and

promoted to a temporary pool of parents; the loser is dismissed.

• Roulette wheel: As it happens in a casino roulette game, candidates bet

for slots in a simulated roulette wheel; slots are allocated in proportion to

their fitness (fitter candidates can bet on more slots). Then, the algorithm

spins the wheel n times; at every turn the lucky winner is selected and

promoted to the pool of parents. It is clear that candidates with bigger

slices of the roulette will be at better odds of being selected (a candidate

is selected as many times as he wins). To illustrate this method, below is a

picture of the roulette wheel corresponding to the binary candidates for the

OneMax problem showed before.
Here you can see that candidates c4 and
c5 share the biggest slices as their fitness
is closest to that of the optimal solution,
( f (c4) = 5, f (c5) = 6, f (xbest) = 7)

In fact, the proportions in the roulette wheel
correspond to probabilities of being selected,
as they are computed using the following
rule:

p(ck) =
f (ck)

∑n
j=1 f (cl)

Notice that the size of the slots slices were allocated proportional to the

fitness of each candidate, as it can be seen in the following table:
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Name Chromosome Fitness
Roulette

slice

c1 4 21.1 %

c2 2 10.5%

c3 2 10.5%

c4 5 26.3%

c5 6 31.6%

Sum 19 100%

We can replicate the table above using Python as follows:

import pandas as pd
df = pd.DataFrame(pop)
df[’fitness’] = fit
df[’slice’] = (1.0*fit)/fit.sum()
print "--- Population data ---"
print df
print "--- Sum of data columns ---"
print df.sum(axis=0)

Out[15]:

--- Population data ---
0 1 2 3 4 5 6 7 8 9 fitness slice

0 1 0 1 0 1 0 1 0 1 1 6 0.260870
1 1 0 0 1 1 0 0 1 0 1 5 0.217391
2 0 1 1 0 1 1 1 0 0 0 5 0.217391
3 0 0 1 0 0 0 1 1 0 1 4 0.173913
4 0 0 0 0 1 1 1 0 0 0 3 0.130435

--- Sum of data columns ---
0 2.0
1 1.0
2 3.0
3 1.0
4 4.0
5 2.0
6 4.0
7 2.0
8 1.0
9 3.0
fitness 23.0
slice 1.0
dtype: float64

Finally, an easy way to simulate the Roulette wheel selection strategy

is the random.choice() function, which choose randomly with replacement, a

number of elements from a set, with a non-uniform probability distribution. For

example, the following script chooses 10 colours with a preference towards a

warm palette:

colors = [’red’, ’orange’, ’yellow’, ’green’, ’blue’, ’white’]
weights = [.3, .25, .25, .1, .05, .05]
np.random.choice(colors, 10, p=weights)
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Out[16]:

array([’red’, ’orange’, ’green’, ’yellow’, ’orange’, ’white’, ’yellow’,
’orange’, ’blue’, ’red’], dtype=’|S6’)

Thus, selecting the fittest candidates that would be able to breed the next

generation can be done as follows (in this example, chromosome number

0 has a slightly greater chance of being selected because its higher fitness

value):

newpop_id = np.random.choice(pop_size, pop_size, p=df["slice"])
print "Id of selected chromosomes according to fitness distribution:"
print newpop_id

Out[17]:

Id of selected chromosomes according to fitness distribution:
array([0, 0, 4, 1, 2])

Challenge 3.39
Write Python code to simulate the Tournament selection strategy.

Crossover

The crossover operator aims at combining the genetic material of the selected

candidates, in a similar way living organisms reproduce by combining the

genes in the chromosomes of their parents. Its motivation is exploitative:

selected parents are among the fittest to solve the problem, thus it is expected

their offspring to perform equally or even better.

The operator works as follows: two candidates are taken from the pool of

parents that were previously promoted by the selection process, as described

before. Then, taking into account that mating in real life occurs depending on

numerous circumstances (flirting, courting, casual encounters, birth control

and so on), the operator is applied conditional on a crossover probability (pc).

This parameter can be fine–tuned in order to obtain different evolutionary

results. A value pc = 0.7 is usually a good guess to start experimenting with.

Let us denote an arbitrary pair of father and mother as p = ci and m = cj

respectively, and assuming mating occurs, their offspring as ḣ and ḧ. For bi-

nary string chromosomes, two popular crossover techniques are the following:

• One–point crossover: A random locus in the parents chromosome is

chosen, then the resulting segments are exchanged to create two children.
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Now, let’s write some code in Python to implement One-point crossover.

Assuming the mother and father are chromosomes number 1 and 2 re-

spectively, we choose a random locus and mix the arrays to produce the

offspring:

## Choose father, mother and cutoff point ##
father, mother = pop[[1,2]]
loc = np.random.randint(sol_len)

## Breed by mixing the genetic material ##
child1 = np.concatenate((father[:loc], mother[loc:]))
child2 = np.concatenate((mother[:loc], father[loc:]))

## Show crossover results ##
print "Parents : ", father, mother
print "Cutpoint : ", loc
print "Offspring: ", child1, child2

newpop = np.vstack((mother, father, child1, child2))
newfit = newpop.sum(axis=1)
print "New population and fitness: \n", newpop, newfit

Out[18]:

Parents : [1 0 0 1 1 0 0 1 0 1] [0 1 1 0 1 1 1 0 0 0]
Cutpoint : 7
Offspring: [1 0 0 1 1 0 0 0 0 0] [0 1 1 0 1 1 1 1 0 1]

New population and fitness:
[[0 1 1 0 1 1 1 0 0 0]
[1 0 0 1 1 0 0 1 0 1]
[1 0 0 1 1 0 0 0 0 0]
[0 1 1 0 1 1 1 1 0 1]] [5 5 3 7]

It can be seen that by choosing gene 7 as cut point, child2 was born a fitter

chromosome (its fitness is 7 compared to 5 of their parents). Hence, in the

next generation child2 presumably will have better chances to reproduce

than his sibling child1 which was born with a lower fitness of 3.

• Two–point crossover: This operator randomly chooses two cut-off loci,

exchanging the genetic string that falls within these two points.

Two–point crossover can be seen as special
case of one–point crossover if the flat strings
are folded as rings by joining together
their end points; the difference being, this
operator can combine two not contiguous
genetic regions to produce the children.
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Challenge 3.40
Write Python code to implement the Two-point crossover technique.

Mutation

In contrast to the crossover operator, the aim of mutations is to ensure di-

versity within the genetic pool of the population. Its motivation is exploratory:

small changes are induced in the genetic material of promising candidates

in the hope of finding better adaptations. The positive or negative impact of

these variations on the fitness of the mutants would be filtered by the selec-

tion operator; if they are advantageous for improving the chances of survival,

the population would keep the new adaptations when reproducing parents

inheriting the mutated traits to their children.

The operator works as follows: a very few candidates from the offspring

are selected at random; then a slight variation to some of their genes is per-

formed. Likewise the real life where mutations are rare but happen due to

strange circumstances (cosmic rays, sequencing errors during DNA replica-

tion and so on), the application of the operator is conditioned on a parameter

known as mutation probability (pm). Again, this is another parameter that

can be fine–tuned in order to obtain different evolutionary results. A value

pm = 0.01 is usually a good guess to start experimenting with.

For binary string chromosomes, two popular mutation techniques are the

following:

• One bit mutation: A soon-to-be mutant is chosen with probability pm, and

a bit at a locus picked at random is flipped.

• Multi–bit mutation: The entire chromosome of the soon-to-be mutant is

traversed, while each locus is flipped or not according to probability pm.

Let’s try a possible Python implementation of the Multi–bit mutation. We

can use a feature called binary masking for this purpose. It works by testing a

condition in every location of the array; then only those positions satisfying the

condition would be updated. For example, mutation for chromosome number 4

in our population is illustrated below:

pm = 0.01
mutant = pop[4]
print "Mutant: ", mutant
print "Inverted mutant: ", 1-mutant
mask = np.random.uniform(0, 1, size = sol_len) < pm
print "Mask: ", mask
mutant[mask] = 1-mutant[mask]
print "Updated mutant: ", mutant
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Out[19]:

Mutant: [0 0 0 0 1 1 1 0 0 0]
Inverted mutant: [1 1 1 1 0 0 0 1 1 1]
Mask: [False False False False False True False True False False]
Updated mutant: [0 0 0 0 1 0 1 1 0 0]

We can actually take advantage of binary masking to apply Multi–bit
mutation to the entire population in a single go:

pm = 0.1
print "Original population: \n", pop
mask = np.random.uniform(0,1,size=(pop_size, sol_len)) < pm # Choose mutant genes
print "Mask: \n", mask
newpop = pop # Copy mutant population
newpop[mask] = 1-pop[mask] # Perform actual mutation
print "Mutated population: \n", newpop

Out[20]:

Original population:
[[1 0 1 0 1 0 1 0 1 1]
[1 0 0 1 1 0 0 1 0 1]
[0 1 1 0 1 1 1 0 0 0]
[0 0 1 0 0 0 1 1 0 1]
[0 0 0 0 1 0 1 1 0 0]]

Mask:
[[False False True False False False True False True False]
[False False False False False True True False True False]
[False False False False False True False True False True]
[False False False True False False False False True False]
[False False False True False True False False False False]]

Mutated population:
[[1 0 0 0 1 0 0 0 0 1]
[1 0 0 1 1 1 1 1 1 1]
[0 1 1 0 1 0 1 1 0 1]
[0 0 1 1 0 0 1 1 1 1]
[0 0 0 1 1 1 1 1 0 0]]

Challenge 3.41
Write Python code to implement the One bit mutation technique.

Stopping criteria

The criterion to stop the evolution of a GA is generally determined by the max-

imum number of generations. There are other more sophisticated techniques

tracking population indicators such as the loss of diversity (stagnation) or al-

locating a maximum number of fitness evaluations, or a combination of these

criteria.

Replacement strategies

This concept is related to how the ageing population is replaced by the

younger offspring. The are usually two strategies:

Page 86



Models of Learning and Optimization for Data Scientists Sergio Rojas-Galeano

• Generational: a new generation of individuals is produced from the pre-

vious population. This implies that n new children are obtained from n
parents by repeated application of selection, crossover and mutation.

• Steady-state: Here just a few individuals in each generation are replaced.

Typically, a percentage of the total population corresponding to the worst

subset of candidates are replaced.

Challenge 3.42
Up to this point we have seen all the conceptual elements and techni-

cal ideas needed to develop the GA metaheuristic. Your task is now to

complete the code that implements the class GA.

Test your class on the OneMax problem. Try it with different values

of ` ∈ {101, 102, 103, 104, 105, 106} using the default values for the

algorithm parameters. What can you say about runtime behaviour? Or

about evolution generations? Or about number of fitness evaluations?

Hint: This is a maximisation problem that must be converted to a minimisation problem.

Challenge 3.43
Similar to Challenge 3.42, this time study the effect of the algorithm

parameters on OneMax problems ` ∈ {103, 106}. How does the GA

behaves with varying settings of n, pc and pm?

Challenge 3.44
Say you want your GA algorithm to design from scratch an official

checkers board. The board is actually a 2D matrix with this pattern:

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

1 2 3 4 5 6 7 8

which can be represented in 1D array as follows:

����������������������������������������������������������������

• Define the corresponding fitness function and solve the problem.

• Experiment with different genetic operators and parameter values.

Hint: Associate each cell in the board with a bit in the chromosome.
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Challenge 3.45
Implement the GA class for numeric domains. Define the solution en-

coding and genetic operators Selection, Crossover and Mutation for

this kind of domain. Use function generalised Sphere as a testbed.

Metaheuristics benchmarks

In this section your aim is to learn how to evaluate the behaviour of different

metaheuristics in standard optimisation problems, and to compare their perfor-

mances in terms of effectiveness and efficiency to solve such problems. Let’s

begin by recalling the generalised Sphere cost function definition:

f̃S(x, c, b) = b +
d

∑
i=1

(xi − ci)
2.

A plot visualising a particular instance of this function is shown below.

We previously verified that even the generalised Sphere is a simple prob-

lem easily solvable using metaheuristics. Now we will consider more difficult

problems. A standard benchmark set for continuous–domain problems is

listed in the tables below.
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Problem Definition / Minimum Plot for x ∈ R2

Rastrigin fR(x) = 10d + ∑d
i=1
(
x2

i − 10 cos(2πxi)
)

−5.12 ≤ xi ≤ 5.12 f ?R(0, . . . , 0) = 0

Ackley fA(x) = −20 exp
(
−0.2

√
0.5
(
x2

1 + x2
2
))

− exp [0.5 (cos 2πx1 + cos 2πx2)] + e + 20
−5 ≤ x1, x2 ≤ 5

f ?A(0, 0) = 0

Rosenbrock fK(x) = ∑d−1
i=1

(
100

(
xi+1 − x2

i
)2

+ (1− xi)
2
)

−∞ ≤ xi ≤ ∞ f ?K(1, . . . , 1) = 0

Booth fB(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

−10 ≤ x1, x2 ≤ 10 f ?B(1, 3) = 0

fH(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2

Himmelblau

−5 ≤ x1, x2 ≤ 5 f ?H(3.0, 2.0) = 0; f ?H(−2.8, 3.1) = 0;
f ?H(−3.7,−3.2) = 0; f ?H(3.5,−1.8) = 0.
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Problem Definition / Minimum Plot for x ∈ R2

fE(x1, x2) =

Easom −cos (x1) cos (x2) exp
(
−
(
(x1−π)2 + (x2−π)2

))
−100≤ x1, x2≤100

f ?E(π, π) = −1

fG(x1, x2) = − (y + 47) sin
√∣∣ x

2 + (y + 47)
∣∣

Eggholder − x sin
√
|x− (y + 47)|

−512≤ x1, x2≤512
f ?G(512, 404.2319) = −959.6407

Challenge 3.46
Write function definitions in Python and produce 3D surface plots like

the above for each problem fS, fR, fA, fK, fB, fH , fE and fG. Besides,

produce 2D contour plots. Determine which problems have single,

multiple or non local minima, and single or multiple global minima.

NB. Try using plt.contour(...), plt.contourf(...), plt.colorbar() for the 2D plots.

Challenge 3.47

Solve each problem fS, fR, fA, fK, fB, fH , fE and fG using the fol-

lowing metaheuristics: Exhaustive Search, Random Search, Random

Walk, Hill Climbing family, Simulated Annealing and Genetic Algo-

rithm. Compare their performance regarding the following criteria:

• Effectiveness. For example, measuring the success rate, i.e. the

proportion of runs that actually found the global minimum from

a number of repetitions (that is, those runs that did not get stuck

into a local minimum); alternatively, you may allow solutions close

enough to the global, up to a small tolerance error.

• Efficiency. For example, measuring the runtime or number of

evaluations needed to find the minimum or a solution close to the

minimum within a small tolerance error.

Combining both criteria, which metaheuristic is more suitable for each

problem? Which one is best overall the benchmark evaluation?

NB. Support your answer using visually-friendly tools such as contour and scatter plots,

bar and pie diagrams, heatmaps, etc.
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Challenge 3.48
Complete the benchmark of Challenge 3.47 additionally including the

previous results obtained for your own–defined multi–peak functions of

Challenge 3.28.

Now let’s switch to discrete domains and see how to benchmark meta-

heuristics in boolean vector–domain functions (xi ∈ {0, 1}). The maximi-

sation problems listed in the table below, are commonly used for comparison

purposes.

Problem Definition Description

All ones (OneMax) It’s the total number of ones in the

vector. This is the classic example

of a linear problem, where there

is no linkage between any of the

vector values at all.

Leading ones It counts the number of ones in the

vector, starting at the beginning,

until a zero is encountered. In other

words, it returns the position of the

first zero found in the vector (minus

one).

Leading ones blocks Given a value b, it counts the num-

ber of substrings of ones, each

one b bits long, until it sees a zero.

Examples:

f (1, 1, 1, 0, 0, 0, 1, 0, 1) = 1
f (1, 1, 1, 1, 1, 1, 0, 1, 0) = 2
f (1, 1, 1, 1, 1, 1, 1, 1, 1) = 3
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Challenge 3.49

Solve each problem fOM, fLO and fLOB for n ∈ {10, 102, . . . , 106},
using the following metaheuristics: Exhaustive Search, Random

Search, Random Walk, Hill Climbing family, Simulated Annealing

and Genetic Algorithm. Compare their performance regarding the

following criteria:

• Effectiveness. For example, measuring the success rate, i.e. the

proportion of runs that actually found the global maximum from

a number of repetitions (that is, those runs that did not get stuck

into a local maximum); alternatively, you may allow solutions close

enough to the global, up to a small tolerance error.

• Efficiency. For example, measuring the runtime or number of

evaluations needed to find the maximum or a solution close to the

minimum within a small tolerance error.

Combining both criteria, which metaheuristic is more suitable for each

problem? Which one is best overall the benchmark evaluation?

NB. Again, support your answer using visually-friendly tools such as contour and scatter

plots, bar and pie diagrams, heatmaps, etc.

Challenge 3.50
Come up with two brand-new boolean vector-domain problems, like

those aforementioned (for example, the ZeroMax problem). Replicate

Challenge 3.49 for these two new problems.

Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDA) are stochastic search techniques

that evolve a probability distribution model from a population of solution candi-

dates, rather than evolving the population itself. The distribution is estimated

iteratively using the most promising (sub-optimal) solutions until convergence.

The generic estimation procedure is depicted in the algorithm below, which

encompasses the following steps. Firstly the parameters of the probability

distribution model, θ, are initialised. Then, the algorithm loops over three basic

operators in order to update the parameters θ until convergence. The first

operator samples a pool S of n candidates from the model. The second op-

erator ranks the pool according to the fitness(·) function and select the most

promising solutions into B. The final operator re-estimates the parameters θ

from the B subset.
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Algorithm 10: EDA

Input: n: pool size, `: problem dimensionality

Input: fitness(x): a cost function to optimise, x ∈ R`

Output: θ: set of probability model parameters

θ← initialize(`)

repeat until θ converges
S ← sample(P(X; θ), n)
F ← fitness(S)
B ← select(S ,F )
θ← estimate(θ,B)

The actual realisation of each of those steps determine different types of

EDAs: discrete or continuous model parameters; binomial, multinomial or

gaussian distributions; univariate, bivariate or multivariate dependencies. For

example, the Population-Based Incremental Algorithm (PBIL) uses a binomial

probability distribution to model a population of binary chromosomes. Hence,

the parameters of the model are represented as the prototype probability

vector θ := [θ1, . . . , θ`], where P(ci = 1) = θi and P(ci = 0) = (1− θi).

From this prototype vector a population of binary candidate solutions can be

sampled by flipping a biased coin to set each gene with bias θi.

The algorithm initialises a parameter vector with random values in the unit

interval; then a pool of candidates is sampled from a binomial distribution with

the parameter vector, and their fitness are computed. After that, the fittest

candidates are used to refine the parameters with an incremental learning rule

that keeps a fraction of the old values and adds the average of the top–ranked

candidates (with learning rate 0 ≤ η ≤ 1). These steps are iterated until

convergence of the parameters. The PBIL pseudo-code is summarised below.

Algorithm 11: PBIL

Input: n: pool size, `: problem dimensionality, m: selection size

Input: fitness(x): a cost function to optimise, x ∈ R`, η: learning rate

Output: θ := {θi}`i=1: parameters of Binomial distribution, 0 ≤ θi ≤ 1
Output: xbest: the best found minimum

θ← initialize([0, 1], `)
xbest ← create()
repeat until θ converges
S ← sample(Binomial(θ), n)
F = fitness(S)
B ← select(S ,F , m)

θ = (1− η)θ+ η 1
m ∑i xi, xi ∈ S

xbest ← update_best(B,F , xbest)
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In order to implement PBIL in Python, we shall firstly define the generic

EDA class:

class GenericEDA():

## Setup EDA basic variables ##
def setup(self, cand_size=20, max_evals=100, selection_rate=0.5, learning_rate=1.0,

cost_func=None):
self.cand_size = cand_size
self.sample_size = cand_size
self.max_evals = max_evals
self.selection_rate = selection_rate
self.learning_rate = learning_rate
self.cost_func = cost_func
self.distr = None

def sample(self, sample_size, top_ranked, best):
return self.distr.sample(sample_size)

def get_top_ranked(self, candidates):
fits = self.cost_func(candidates)
index = np.argsort(fits)[:(self.cand_size*self.selection_rate/100):-1]
return candidates[index],
Solution(candidates[index[0]],fits[index[0]])

## Optimisation algorithm ##
def optimise(self):

best = Solution(None, float(’-Inf’))
top_ranked = None
while not self.distr.has_converged():

candidates=self.sample(self.sample_size, top_ranked, best)
top_ranked, winner = self.get_top_ranked(candidates)
self.estimate(top_ranked, best)
if best.cost < winner.cost:

best = winner
self.iters += 1

return best

## Abstract method ##
def estimate(self, candidates, best):

raise NotImplementedError()

Now we can easily derive the PBIL class using the inheritance mechanism:

class PBIL(GenericEDA):

def initialize(self):
self.distr = Binomial(self.var_size)

def estimate(self, top_ranked, best):
self.distr.p = self.distr.p*(1-self.learning_rate)

+ self.learning_rate * np.average(top_ranked)

Challenge 3.51
Evaluate the performance of PBIL in solving the discrete domain

problems of Challenge 3.49. Show how PBIL compares to GA with

respect to effectiveness and efficiency.

Another variation of an EDA, the so-called Compact GA (cGA), is designed

to save memory costs in the estimation step of the algorithm, which can be an

important consideration when dealing with large–scale problems (those with a

high number of decision variables).
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cGA resembles PBIL, the only difference is the estimation rule which is de-

signed in a compact mode: instead of using a batch of promising candidates

to refine the distribution parameters, this algorithm updates said parameters

by sampling only two candidates at a time. This update is repeated m times to

take into account the contributions of the top–ranked candidates in the popu-

lation; the latter resembles the mechanism of Tournament Selection used in

the canonical GA. Below a pseudocode of cGA is shown.

Algorithm 12: cGA

Input: n: population size, `: problem dimensionality

Input: fitness(x): a cost function to optimise, x ∈ R`

Output: θ := {θi}`i=1: parameters of Binomial distribution, 0 ≤ θi ≤ 1
Output: xbest: the best found minimum

θ← initialize([0, 1], `)
xbest ← create()
repeat until θ converges

repeat n times
{x1, x2} ← sample(Binomial(θ), 2)
{xwin, xfail} ← compete(fitness(x1), fitness(x2))

θ = θ+ 1
n (xwin − xfail)

xbest ← update_best(xwin, xbest)

The following Python script implements the cGA class.

class cGA(GenericEDA):
def initialize(self):

self.distr=Binomial(self.var_size)
self.learning_rate=1.0/float(self.pop_size)
self.sample_size=2

def estimate(self, (winner, loser), best):
self.distr.p =
np.minimum(np.ones((1, self.var_size)),
np.maximum(np.zeros((1, self.var_size)),
self.distr.p + (winner.params-loser.params)*self.learning_rate))

def get_top_ranked(self, candidates):
costs = self.cost_func(candidates)
maxindx = np.argmax(costs)
winner = Solution(candidates[maxindx], costs[maxindx])
loser = Solution(candidates[not maxindx], costs[not maxindx])
return (winner, loser), winner

Challenge 3.52
Repeat Challenge 3.51 this time evaluating the performance of cGA.

Show how it compares to PBIL and GA regarding effectiveness and

efficiency.
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Suggested readings
↓ Contemporary books

• Sean Luke. Essentials of Metaheuristics, 2nd. Edition, lulu.com, 2015.

• Bozorg-Haddad, Solgi & Loiciga. Metaheuristic and Evolutionary Algo-

rithms for Engineering Optimization, Wiley, 2017.

• Patrick Siarry. Metaheuristics, Springer, 2016.

• Ke-Lin Du & M. N. S. Swamy. Search and Optimization by Metaheuristics,

Birkhäuser, 2016.
↓ Classic books

• John Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI:

University of Michigan Press, 1975.

• David E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-

chine Learning, Addison-Wesley, 1989.

• Melanie Mitchell. An Introduction to Genetic Algorithms, MIT Press, 1998.

——– THE END ——–
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